
NLM Citation: Kans J. Entrez Direct: E-utilities on the Unix Command
Line. 2013 Apr 23 [Updated 2024 May 9]. In: Entrez Programming
Utilities Help [Internet]. Bethesda (MD): National Center for
Biotechnology Information (US); 2010-.
Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/

Entrez Direct: E-utilities on the Unix Command Line
Jonathan Kans, PhD 1

Created: April 23, 2013; Updated: May 9, 2024.

Getting Started

Introduction
Entrez Direct (EDirect) provides access to the NCBI's suite of interconnected databases (publication, sequence,
structure, gene, variation, expression, etc.) from a Unix terminal window. Search terms are entered as command-
line arguments. Individual operations are connected with Unix pipes to construct multi-step queries. Selected
records can then be retrieved in a variety of formats.

Installation
EDirect will run on Unix and Macintosh computers, and under the Cygwin Unix-emulation environment on
Windows PCs. To install the EDirect software, open a terminal window and execute one of the following two
commands:

 sh -c "$(curl -fsSL https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh)"

 sh -c "$(wget -q https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh -O -)"

This will download a number of scripts and several precompiled programs into an "edirect" folder in the user's
home directory. It may then print an additional command for updating the PATH environment variable in the
user's configuration file. The editing instructions will look something like:

 echo "export PATH=\$HOME/edirect:\$PATH" >> $HOME/.bash_profile

As a convenience, the installation process ends by offering to run the PATH update command for you. Answer
"y" and press the Return key if you want it run. If the PATH is already set correctly, or if you prefer to make any
editing changes manually, just press Return.

Once installation is complete, run:

 export PATH=${HOME}/edirect:${PATH}

to set the PATH for the current terminal session.

Author Affiliation: 1 NCBI; Email: kans@ncbi.nlm.nih.gov.

 Corresponding author.

Quick Start
The readme.pdf file included in the edirect folder contains a highly-abridged version of this document. It is
intended to convey the most important points in the least amount of time for the new user, while still presenting
the minimal essential details. It also covers subtle issues in several Entrez biological databases, demonstrates
integration of data from external sources, and has a brief introduction to scripting and programming.

The full documentation gives a much more in-depth exploration of the underlying topics, especially in the
Complex Objects section, and in the Additional Examples web page, which is organized by Entrez database. This
document also introduces other worthy topics, such as identifier lookup and sequence coordinate conversions,
and has a more thorough treatment of automation.

Programmatic Access
EDirect connects to Entrez through the Entrez Programming Utilities interface. It supports searching by indexed
terms, looking up precomputed neighbors or links, filtering results by date or category, and downloading record
summaries or reports.

Navigation programs (esearch, elink, efilter, and efetch) communicate by means of a small structured message,
which can be passed invisibly between operations with a Unix pipe. The message includes the current database,
so it does not need to be given as an argument after the first step.

Accessory programs (nquire, transmute, and xtract) can help eliminate the need for writing custom software to
answer ad hoc questions. Queries can move seamlessly between EDirect programs and Unix utilities or scripts to
perform actions that cannot be accomplished entirely within Entrez.

All EDirect programs are designed to work on large sets of data. They handle many technical details behind the
scenes (avoiding the learning curve normally required for E-utilities programming). Intermediate results are
either saved on the Entrez history server or instantiated in the hidden message. For best performance, obtain an
API Key from NCBI, and place the following line in your .bash_profile and .zshrc configuration files:

 export NCBI_API_KEY=unique_api_key

Unix programs are run by typing the name of the program and then supplying any required or optional
arguments on the command line. Argument names are letters or words that start with a dash ("‑") character.

Each program has a ‑help command that prints detailed information about available arguments.

Navigation Functions
Esearch performs a new Entrez search using terms in indexed fields. It requires a ‑db argument for the database
name and uses ‑query for the search terms. For PubMed, without field qualifiers, the server uses automatic term
mapping to compose a search strategy by translating the supplied query:

 esearch -db pubmed -query "selective serotonin reuptake inhibitor"

Search terms can also be qualified with a bracketed field name to match within the specified index:

 esearch -db nuccore -query "insulin [PROT] AND rodents [ORGN]"

Elink looks up precomputed neighbors within a database, or finds associated records in other databases:

 elink -related

 elink -target gene

2 Entrez Programming Utilities Help

Elink also connects to the NIH Open Citation Collection dataset to find publications that cite the selected
PubMed articles, or to follow the reference lists of PubMed records:

 elink -cited

 elink -cites

Efilter limits the results of a previous query, with shortcuts that can also be used in esearch:

 efilter -molecule genomic -location chloroplast -country sweden -mindate 1985

Efetch downloads selected records or reports in a style designated by ‑format:

 efetch -format abstract

There is no need to use a script to loop over records in small groups, or write code to retry after a transient
network or server failure, or add a time delay between requests. All of those features are already built into the
EDirect commands.

Constructing Multi-Step Queries
EDirect allows individual operations to be described separately, combining them into a multi-step query by
using the vertical bar ("|") Unix pipe symbol:

 esearch -db pubmed -query "tn3 transposition immunity" | efetch -format medline

Writing Commands on Multiple Lines
A query can be continued on the next line by typing the backslash ("\") Unix escape character immediately
before pressing the Return key.

 esearch -db pubmed -query "opsin gene conversion" | \

Continuing the query looks up precomputed neighbors of the original papers, next links to all protein sequences
published in the related articles, then limits those to the rodent division of GenBank, and finally retrieves the
records in FASTA format:

 elink -related | \
 elink -target protein | \
 efilter -division rod | \
 efetch -format fasta

In most modern versions of Unix the vertical bar pipe symbol also allows the query to continue on the next line,
without the need for an additional backslash.

Accessory Programs
Nquire retrieves data from remote servers with URLs constructed from command line arguments:

 nquire -get https://icite.od.nih.gov api/pubs -pmids 2539356 |

Transmute converts a concatenated stream of JSON objects or other structured formats into XML:

 transmute -j2x |

Xtract can use waypoints to navigate a complex XML hierarchy and obtain data values by field name:

 xtract -pattern data -element cited_by |

The resulting output can be post-processed by Unix utilities or scripts:

Entrez Direct: E-utilities on the Unix Command Line 3

 fmt -w 1 | sort -V | uniq

Discovery by Navigation
PubMed related articles are calculated by a statistical text retrieval algorithm using the title, abstract, and
medical subject headings (MeSH terms). The connections between papers can be used for making discoveries.
An example of this is finding the last enzymatic step in the vitamin A biosynthetic pathway.

Lycopene cyclase in plants converts lycopene into β-carotene, the immediate biochemical precursor of vitamin
A. An initial search on the enzyme finds 303 articles. Looking up precomputed neighbors returns 18,943 papers,
some of which might be expected to discuss other enzymes in the pathway:

 esearch -db pubmed -query "lycopene cyclase" | elink -related |

β-carotene is known to be an essential nutrient, required in the diet of herbivores. This indicates that lycopene
cyclase is not present in animals (with a few exceptions caused by horizontal gene transfer), and that the enzyme
responsible for converting β-carotene into vitamin A is not present in plants.

Applying this knowledge, by linking the publication neighbors to their associated protein records and then
filtering those candidates using the NCBI taxonomy, can help locate the desired enzyme.

Linking from pubmed to the protein database finds 520,222 protein sequences:

 elink -target protein |

Limiting to mice excludes plants, fungi, and bacteria, which eliminates the earlier enzymes:

 efilter -organism mouse -source refseq |

This matches only 26 sequences, which is small enough to examine by retrieving the individual records:

 efetch -format fasta

As anticipated, the results include the enzyme that splits β-carotene into two molecules of retinal:

 ...
 >NP_067461.2 beta,beta-carotene 15,15'-dioxygenase isoform 1 [Mus musculus]
 MEIIFGQNKKEQLEPVQAKVTGSIPAWLQGTLLRNGPGMHTVGESKYNHWFDGLALLHSFSIRDGEVFYR
 SKYLQSDTYIANIEANRIVVSEFGTMAYPDPCKNIFSKAFSYLSHTIPDFTDNCLINIMKCGEDFYATTE
 TNYIRKIDPQTLETLEKVDYRKYVAVNLATSHPHYDEAGNVLNMGTSVVDKGRTKYVIFKIPATVPDSKK
 ...

Retrieving PubMed Reports
Piping PubMed query results to efetch and specifying the "abstract" format:

 esearch -db pubmed -query "lycopene cyclase" |
 efetch -format abstract

returns a set of reports that can be read by a person:

 ...
 85. PLoS One. 2013;8(3):e58144. doi: 10.1371/journal.pone.0058144. Epub ...

 Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and
 accumulation in Daucus carota.

 Moreno JC(1), Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C.

 Author information:

4 Entrez Programming Utilities Help

 (1)Departamento de Biología, Facultad de Ciencias, Universidad de Chile,
 Santiago, Chile.

 Plant carotenoids are synthesized and accumulated in plastids through a
 highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme
 involved directly in the synthesis of α-carotene and β-carotene through
 ...

If "medline" format is used instead:

 esearch -db pubmed -query "lycopene cyclase" |
 efetch -format medline

the output can be entered into common bibliographic management software packages:

 ...
 PMID- 23555569
 OWN - NLM
 STAT- MEDLINE
 DA - 20130404
 DCOM- 20130930
 LR - 20131121
 IS - 1932-6203 (Electronic)
 IS - 1932-6203 (Linking)
 VI - 8
 IP - 3
 DP - 2013
 TI - Levels of lycopene beta-cyclase 1 modulate carotenoid gene expression
 and accumulation in Daucus carota.
 PG - e58144
 LID - 10.1371/journal.pone.0058144 [doi]
 AB - Plant carotenoids are synthesized and accumulated in plastids
 through a highly regulated pathway. Lycopene beta-cyclase (LCYB) is a
 key enzyme involved directly in the synthesis of alpha-carotene and
 ...

Retrieving Sequence Reports
Nucleotide and protein records can be downloaded in FASTA format:

 esearch -db protein -query "lycopene cyclase" |
 efetch -format fasta

which consists of a definition line followed by the sequence:

 ...
 >gi|735882|gb|AAA81880.1| lycopene cyclase [Arabidopsis thaliana]
 MDTLLKTPNKLDFFIPQFHGFERLCSNNPYPSRVRLGVKKRAIKIVSSVVSGSAALLDLVPETKKENLDF
 ELPLYDTSKSQVVDLAIVGGGPAGLAVAQQVSEAGLSVCSIDPSPKLIWPNNYGVWVDEFEAMDLLDCLD
 TTWSGAVVYVDEGVKKDLSRPYGRVNRKQLKSKMLQKCITNGVKFHQSKVTNVVHEEANSTVVCSDGVKI
 QASVVLDATGFSRCLVQYDKPYNPGYQVAYGIIAEVDGHPFDVDKMVFMDWRDKHLDSYPELKERNSKIP
 TFLYAMPFSSNRIFLEETSLVARPGLRMEDIQERMAARLKHLGINVKRIEEDERCVIPMGGPLPVLPQRV
 VGIGGTAGMVHPSTGYMVARTLAAAPIVANAIVRYLGSPSSNSLRGDQLSAEVWRDLWPIERRRQREFFC
 FGMDILLKLDLDATRRFFDAFFDLQPHYWHGFLSSRLFLPELLVFGLSLFSHASNTSRLEIMTKGTVPLA
 KMINNLVQDRD
 ...

Sequence records can also be obtained as GenBank or GenPept flatfiles:

 esearch -db protein -query "lycopene cyclase" |
 efetch -format gp

Entrez Direct: E-utilities on the Unix Command Line 5

which have features annotating particular regions of the sequence:

 ...
 LOCUS AAA81880 501 aa linear PLN ...
 DEFINITION lycopene cyclase [Arabidopsis thaliana].
 ACCESSION AAA81880
 VERSION AAA81880.1 GI:735882
 DBSOURCE locus ATHLYC accession L40176.1
 KEYWORDS .
 SOURCE Arabidopsis thaliana (thale cress)
 ORGANISM Arabidopsis thaliana
 Eukaryota; Viridiplantae; Streptophyta; Embryophyta;
 Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons;
 Brassicales; Brassicaceae; Camelineae; Arabidopsis.
 REFERENCE 1 (residues 1 to 501)
 AUTHORS Scolnik,P.A. and Bartley,G.E.
 TITLE Nucleotide sequence of lycopene cyclase (GenBank L40176) from
 Arabidopsis (PGR95-019)
 JOURNAL Plant Physiol. 108 (3), 1343 (1995)
 ...
 FEATURES Location/Qualifiers
 source 1..501
 /organism="Arabidopsis thaliana"
 /db_xref="taxon:3702"
 Protein 1..501
 /product="lycopene cyclase"
 transit_peptide 1..80
 mat_peptide 81..501
 /product="lycopene cyclase"
 CDS 1..501
 /gene="LYC"
 /coded_by="L40176.1:2..1507"
 ORIGIN
 1 mdtllktpnk ldffipqfhg ferlcsnnpy psrvrlgvkk raikivssvv sgsaalldlv
 61 petkkenldf elplydtsks qvvdlaivgg gpaglavaqq vseaglsvcs idpspkliwp
 121 nnygvwvdef eamdlldcld ttwsgavvyv degvkkdlsr pygrvnrkql kskmlqkcit
 181 ngvkfhqskv tnvvheeans tvvcsdgvki qasvvldatg fsrclvqydk pynpgyqvay
 241 giiaevdghp fdvdkmvfmd wrdkhldsyp elkernskip tflyampfss nrifleetsl
 301 varpglrmed iqermaarlk hlginvkrie edercvipmg gplpvlpqrv vgiggtagmv
 361 hpstgymvar tlaaapivan aivrylgsps snslrgdqls aevwrdlwpi errrqreffc
 421 fgmdillkld ldatrrffda ffdlqphywh gflssrlflp ellvfglslf shasntsrle
 481 imtkgtvpla kminnlvqdr d
 //
 ...

Searching and Filtering

Restricting Query Results
The current results can be refined by further term searching in Entrez (useful in the protein database for limiting
BLAST neighbors to a taxonomic subset):

 esearch -db pubmed -query "opsin gene conversion" |
 elink -related |
 efilter -query "tetrachromacy"

6 Entrez Programming Utilities Help

Limiting by Date
Results can also be filtered by date. For example, the following statements:

 efilter -days 60 -datetype PDAT

 efilter -mindate 2000

 efilter -maxdate 1985

 efilter -mindate 1990 -maxdate 1999

restrict results to articles published in the previous two months, since the beginning of 2000, through the end of
1985, or in the 1990s, respectively. YYYY/MM and YYYY/MM/DD date formats are also accepted.

Fetch by Identifier
Efetch and elink can take a list of numeric identifiers or accessions in an ‑id argument:

 efetch -db pubmed -id 7252148,1937004 -format xml

 efetch -db nuccore -id 1121073309 -format acc

 efetch -db protein -id 3OQZ_a -format fasta

 efetch -db bioproject -id PRJNA257197 -format docsum

 efetch -db pmc -id PMC209839 -format medline

 elink -db pubmed -id 2539356 -cites

without the need for a preceding esearch command.

Non-integer accessions will be looked up with an internal search, using the appropriate field for the database:

 esearch -db bioproject -query "PRJNA257197 [PRJA]" |
 efetch -format uid | ...

Most databases use the [ACCN] field for identifier lookup, but there are a few exceptions:

 annotinfo [ASAC]
 assembly [ASAC]
 bioproject [PRJA]
 books [AID]
 clinvar [VACC]
 gds [ALL]
 genome [PRJA]
 geoprofiles [NAME]
 gtr [GTRACC]
 mesh [MHUI]
 nuccore [ACCN] or [PACC]
 pcsubstance [SRID]
 snp [RS] or [SS]

(For ‑db pmc it merely removes any "PMC" prefix from the integer identifier.)

For backward compatibility, esummary is a shortcut for esearch ‑format docsum:

Entrez Direct: E-utilities on the Unix Command Line 7

 esummary -db bioproject -id PRJNA257197

 esummary -db sra -id SRR5437876

Reading Large Lists of Identifiers
Efetch and elink can also read a large list of identifiers or accessions piped in through stdin:

 cat "file_of_identifiers.txt" |
 efetch -db pubmed -format docsum

or from a file indicated by an ‑input argument:

 efetch -input "file_of_identifiers.txt" -db pubmed -format docsum

As mentioned above, there is no need to use a script to split the identifiers into smaller groups or add a time
delay between individual requests, since that functionality is already built into EDirect.

Indexed Fields
The einfo command can report the fields and links that are indexed for each database:

 einfo -db protein -fields

This will return a table of field abbreviations and names indexed for proteins:

 ACCN Accession
 ALL All Fields
 ASSM Assembly
 AUTH Author
 BRD Breed
 CULT Cultivar
 DIV Division
 ECNO EC/RN Number
 FILT Filter
 FKEY Feature key
 ...

Qualifying Queries by Indexed Field
Query terms in esearch or efilter can be qualified by entering an indexed field abbreviation in brackets. Boolean
operators and parentheses can also be used in the query expression for more complex searches.

Commonly-used fields for PubMed queries include:

 [AFFL] Affiliation [LANG] Language
 [ALL] All Fields [MAJR] MeSH Major Topic
 [AUTH] Author [SUBH] MeSH Subheading
 [FAUT] Author - First [MESH] MeSH Terms
 [LAUT] Author - Last [PTYP] Publication Type
 [CRDT] Date - Create [WORD] Text Word
 [PDAT] Date - Publication [TITL] Title
 [FILT] Filter [TIAB] Title/Abstract
 [JOUR] Journal [UID] UID

and a qualified query looks like:

 "Tager HS [AUTH] AND glucagon [TIAB]"

Filters that limit search results to subsets of PubMed include:

8 Entrez Programming Utilities Help

 humans [MESH]
 pharmacokinetics [MESH]
 chemically induced [SUBH]
 all child [FILT]
 english [FILT]
 freetext [FILT]
 has abstract [FILT]
 historical article [FILT]
 randomized controlled trial [FILT]
 clinical trial, phase ii [PTYP]
 review [PTYP]

Sequence databases are indexed with a different set of search fields, including:

 [ACCN] Accession [MLWT] Molecular Weight
 [ALL] All Fields [ORGN] Organism
 [AUTH] Author [PACC] Primary Accession
 [GPRJ] BioProject [PROP] Properties
 [BIOS] BioSample [PROT] Protein Name
 [ECNO] EC/RN Number [SQID] SeqID String
 [FKEY] Feature key [SLEN] Sequence Length
 [FILT] Filter [SUBS] Substance Name
 [GENE] Gene Name [WORD] Text Word
 [JOUR] Journal [TITL] Title
 [KYWD] Keyword [UID] UID

and a sample query in the protein database is:

 "alcohol dehydrogenase [PROT] NOT (bacteria [ORGN] OR fungi [ORGN])"

Additional examples of subset filters in sequence databases are:

 mammalia [ORGN]
 mammalia [ORGN:noexp]
 txid40674 [ORGN]
 cds [FKEY]
 lacz [GENE]
 beta galactosidase [PROT]
 protein snp [FILT]
 reviewed [FILT]
 country united kingdom glasgow [TEXT]
 biomol genomic [PROP]
 dbxref flybase [PROP]
 gbdiv phg [PROP]
 phylogenetic study [PROP]
 sequence from mitochondrion [PROP]
 src cultivar [PROP]
 srcdb refseq validated [PROP]
 150:200 [SLEN]

(The calculated molecular weight (MLWT) field is only indexed for proteins (and structures), not nucleotides.)

See efilter ‑help for a list of filter shortcuts available for several Entrez databases.

Examining Intermediate Results
EDirect navigation functions produce a custom XML message with the relevant fields (database, web
environment, query key, and record count) that can be read by the next command in the pipeline. EDirect may
store intermediate results on the Entrez history server or instantiate them in the XML message.

Entrez Direct: E-utilities on the Unix Command Line 9

The results of each step in a query can be examined to confirm expected behavior before adding the next step.
The Count field in the ENTREZ_DIRECT object contains the number of records returned by the previous step.
A good measure of query success is a reasonable (non-zero) count value. For example:

 esearch -db protein -query "tryptophan synthase alpha chain [PROT]" |
 efilter -query "28000:30000 [MLWT]" |
 elink -target structure |
 efilter -query "0:2 [RESO]"

produces:

 <ENTREZ_DIRECT>
 <Db>structure</Db>
 <WebEnv> MCID_5fac27e119f45d4eca20b0e6</WebEnv>
 <QueryKey>32</QueryKey>
 <Count>58</Count>
 <Step>4</Step>
 </ENTREZ_DIRECT>

with 58 protein structures being within the specified molecular weight range and having the desired (X-ray
crystallographic) atomic position resolution.

(The QueryKey value differs from Step because the elink command splits its query into smaller chunks to avoid
server truncation limits and timeout errors.)

Combining Independent Queries
Independent esearch, elink, and efilter operations can be performed and then combined at the end by using the
history server's "#" convention to indicate query key numbers. (The steps to be combined must be in the same
database.) Subsequent esearch commands can take a ‑db argument to override the database piped in from the
previous step. (Piping the queries together is necessary for sharing the same history thread.)

Because elink splits a large query into multiple smaller link requests, the new QueryKey value cannot be
predicted in advance. The ‑label argument is used to get around this artifact. The label value is prefixed by a "#"
symbol and placed in parentheses in the final search. For example, the query:

 esearch -db protein -query "amyloid* [PROT]" |
 elink -target pubmed -label prot_cit |
 esearch -db gene -query "apo* [GENE]" |
 elink -target pubmed -label gene_cit |
 esearch -query "(#prot_cit) AND (#gene_cit)" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -element Id Title

uses truncation searching (entering the beginning of a word followed by an asterisk) to return titles of papers
with links to amyloid protein sequence and apolipoprotein gene records:

 23962925 Genome analysis reveals insights into physiology and ...
 23959870 Low levels of copper disrupt brain amyloid-β homeostasis ...
 23371554 Genomic diversity and evolution of the head crest in the ...
 23251661 Novel genetic loci identified for the pathophysiology of ...
 ...

10 Entrez Programming Utilities Help

Structured Data

Advantages of XML Format
The ability to obtain Entrez records in structured eXtensible Markup Language (XML) format, and to easily
extract the underlying data, allows the user to ask novel questions that are not addressed by existing analysis
software.

The advantage of XML is that information is in specific locations in a well-defined data hierarchy. Accessing
individual units of data that are fielded by name, such as:

 <PubDate>2013</PubDate>
 <Source>PLoS One</Source>
 <Volume>8</Volume>
 <Issue>3</Issue>
 <Pages>e58144</Pages>

requires matching the same general pattern, differing only by the element name. This is much simpler than
parsing the units from a long, complex string:

 1. PLoS One. 2013;8(3):e58144 ...

The disadvantage of XML is that data extraction usually requires programming. But EDirect relies on the
common pattern of XML value representation to provide a simplified approach to interpreting XML data.

Conversion of XML into Tables
The xtract program uses command-line arguments to direct the selective conversion of data in XML format. It
allows record detection, path exploration, element selection, conditional processing, and report formatting to be
controlled independently.

The ‑pattern command partitions an XML stream by object name into individual records that are processed
separately. Within each record, the ‑element command does an exhaustive, depth-first search to find data
content by field name. Explicit paths to objects are not needed.

By default, the ‑pattern argument divides the results into rows, while placement of data into columns is
controlled by ‑element, to create a tab-delimited table.

Format Customization
Formatting commands allow extensive customization of the output. The line break between ‑pattern rows is
changed with ‑ret, while the tab character between ‑element columns is modified by ‑tab. Multiple instances of
the same element are distinguished using ‑sep, which controls their separation independently of the ‑tab
command. The following query:

 efetch -db pubmed -id 6271474,6092233,16589597 -format docsum |
 xtract -pattern DocumentSummary -sep "|" -element Id PubDate Name

returns a tab-delimited table with individual author names separated by vertical bars:

 6271474 1981 Casadaban MJ|Chou J|Lemaux P|Tu CP|Cohen SN
 6092233 1984 Jul-Aug Calderon IL|Contopoulou CR|Mortimer RK
 16589597 1954 Dec Garber ED

The ‑sep value also applies to distinct ‑element arguments that are grouped with commas. This can be used to
keep data from multiple related fields in the same column:

Entrez Direct: E-utilities on the Unix Command Line 11

 -sep " " -element Initials,LastName

Groups of fields are preceded by the ‑pfx value and followed by the ‑sfx value, both of which are initially empty.

The ‑def command sets a default placeholder to be printed when none of the comma-separated fields in an
‑element clause are present:

 -def "-" -sep " " -element Year,Month,MedlineDate

Repackaging commands (‑wrp, ‑enc, and ‑pkg) wrap extracted data values with bracketed XML tags given only
the object name. For example, "‑wrp Word" issues the following formatting instructions:

 -pfx "<Word>" -sep "</Word><Word>" -sfx "</Word>"

and also ensures that data values containing encoded angle brackets, ampersands, quotation marks, or
apostrophes remain properly encoded inside the new XML.

Additional commands (‑tag, ‑att, ‑atr, ‑cls, ‑slf, and ‑end) allow generation of XML tags with attributes.
Running:

 -tag Item -att type journal -cls -element Source -end Item \
 -deq "\n" -tag Item -att type journal -atr name Source -slf

will produce regular and self-closing XML objects, respectively:

 <Item type="journal">J Bacteriol</Item>
 <Item type="journal" name="J Bacteriol" />

Element Variants
Derivatives of ‑element were created to eliminate the inconvenience of having to write post-processing scripts to
perform otherwise trivial modifications or analyses on extracted data. They are subdivided into several
categories. Substitute for ‑element as needed. A representative selection is shown below:

 Positional: -first, -last, -even, -odd, -backward

 Numeric: -num, -len, -inc, -dec, -bin, -hex, -bit

 Statistics: -sum, -acc, -min, -max, -dev, -med

 Averages: -avg, -geo, -hrm, -rms

 Logarithms: -lge, -lg2, -log

 Character: -encode, -upper, -title, -mirror, -alnum

 String: -basic, -plain, -simple, -author, -journal, -prose

 Text: -words, -pairs, -letters, -order, -reverse

 Citation: -year, -month, -date, -page, -auth

 Sequence: -revcomp, -fasta, -ncbi2na, -molwt, -pentamers

 Translation: -cds2prot, -gcode, -frame

 Coordinate: -0-based, -1-based, -ucsc-based

 Variation: -hgvs

12 Entrez Programming Utilities Help

 Frequency: -histogram

 Expression: -reg, -exp, -replace

 Substitution: -transform, -translate

 Indexing: -aliases, -classify

 Miscellaneous: -doi, -wct, -trim, -pad, -accession, -numeric

The original ‑element prefix shortcuts, "#" and "%", are redirected to ‑num and ‑len, respectively.

See xtract ‑help for a brief description of each command.

Exploration Control
Exploration commands provide fine control over the order in which XML record contents are examined, by
separately presenting each instance of the chosen subregion. This limits what subsequent commands "see" at any
one time, and allows related fields in an object to be kept together.

In contrast to the simpler DocumentSummary format, records retrieved as PubmedArticle XML:

 efetch -db pubmed -id 1413997 -format xml |

have authors with separate fields for last name and initials:

 <Author>
 <LastName>Mortimer</LastName>
 <Initials>RK</Initials>
 </Author>

Without being given any guidance about context, an ‑element command on initials and last names:

 efetch -db pubmed -id 1413997 -format xml |
 xtract -pattern PubmedArticle -element Initials LastName

will explore the current record for each argument in turn, printing all initials followed by all last names:

 RK CR JS Mortimer Contopoulou King

Inserting a ‑block command adds another exploration layer between ‑pattern and ‑element , and redirects data
exploration to present the authors one at a time:

 efetch -db pubmed -id 1413997 -format xml |
 xtract -pattern PubmedArticle -block Author -element Initials LastName

Each time through the loop, the ‑element command only sees the current author's values. This restores the
correct association of initials and last names in the output:

 RK Mortimer CR Contopoulou JS King

Grouping the two author subfields with a comma, and adjusting the ‑sep and ‑tab values:

 efetch -db pubmed -id 1413997 -format xml |
 xtract -pattern PubmedArticle -block Author \
 -sep " " -tab ", " -element Initials,LastName

produces a more traditional formatting of author names:

 RK Mortimer, CR Contopoulou, JS King

Entrez Direct: E-utilities on the Unix Command Line 13

Sequential Exploration
Multiple ‑block statements can be used in a single xtract to explore different areas of the XML. This limits
element extraction to the desired subregions, and allows disambiguation of fields with identical names. For
example:

 efetch -db pubmed -id 6092233,4640931,4296474 -format xml |
 xtract -pattern PubmedArticle -element MedlineCitation/PMID \
 -block PubDate -sep " " -element Year,Month,MedlineDate \
 -block AuthorList -num Author -sep "/" -element LastName |
 sort-table -k 3,3n -k 4,4f

generates a table that allows easy parsing of author last names, and sorts the results by author count:

 4296474 1968 Apr 1 Friedmann
 4640931 1972 Dec 2 Tager/Steiner
 6092233 1984 Jul-Aug 3 Calderon/Contopoulou/Mortimer

Like ‑element arguments, the individual ‑block statements are executed sequentially, in order of appearance.

Note that "‑element MedlineCitation/PMID" uses the parent / child construct to prevent the display of
additional PMID items that might be present later in CommentsCorrections objects.

Note also that the PubDate object can exist either in a structured form:

 <PubDate>
 <Year>1968</Year>
 <Month>Apr</Month>
 <Day>25</Day>
 </PubDate>

(with the Day field frequently absent), or in a string form:

 <PubDate>
 <MedlineDate>1984 Jul-Aug</MedlineDate>
 </PubDate>

but would not contain a mixture of both types, so the directive:

 -element Year,Month,MedlineDate

will only contribute a single column to the output.

Nested Exploration
Exploration command names (‑group, ‑block, and ‑subset) are assigned to a precedence hierarchy:

 -pattern > -group > -block > -subset > -element

and are combined in ranked order to control object iteration at progressively deeper levels in the XML data
structure. Each command argument acts as a "nested for-loop" control variable, retaining information about the
context, or state of exploration, at its level.

(Hypothetical) census data would need several nested loops to visit each unique address in context:

 -pattern State -group City -block Street -subset Number -element Resident

A nucleotide or protein sequence record can have multiple features. Each feature can have multiple qualifiers.
And every qualifier has separate name and value nodes. Exploring this natural data hierarchy, with ‑pattern for
the sequence, ‑group for the feature, and ‑block for the qualifier:

14 Entrez Programming Utilities Help

 efetch -db nuccore -id NG_008030.1 -format gbc |
 xtract -pattern INSDSeq -element INSDSeq_accession-version \
 -group INSDFeature -deq "\n\t" -element INSDFeature_key \
 -block INSDQualifier -deq "\n\t\t" \
 -element INSDQualifier_name INSDQualifier_value

keeps qualifiers, such as gene and product, associated with their parent features, and keeps qualifier names and
values together on the same line:

 NG_008030.1
 source
 organism Homo sapiens
 mol_type genomic DNA
 db_xref taxon:9606
 gene
 gene COL5A1
 mRNA
 gene COL5A1
 product collagen type V alpha 1 chain, transcript variant 1
 transcript_id NM_000093.4
 CDS
 gene COL5A1
 product collagen alpha-1(V) chain isoform 1 preproprotein
 protein_id NP_000084.3
 translation MDVHTRWKARSALRPGAPLLPPLLLLLLWAPPPSRAAQP...
 ...

Saving Data in Variables
A value can be recorded in a variable and used wherever needed. Variables are created by a hyphen followed by a
name consisting of a string of capital letters or digits (e.g., ‑KEY). Variable values are retrieved by placing an
ampersand before the variable name (e.g., "&KEY") in an ‑element statement:

 efetch -db nuccore -id NG_008030.1 -format gbc |
 xtract -pattern INSDSeq -element INSDSeq_accession-version \
 -group INSDFeature -KEY INSDFeature_key \
 -block INSDQualifier -deq "\n\t" \
 -element "&KEY" INSDQualifier_name INSDQualifier_value

This version prints the feature key on each line before the qualifier name and value, even though the feature key
is now outside of the visibility scope (which is the current qualifier):

 NG_008030.1
 source organism Homo sapiens
 source mol_type genomic DNA
 source db_xref taxon:9606
 gene gene COL5A1
 mRNA gene COL5A1
 mRNA product collagen type V alpha 1 chain, transcript variant 1
 mRNA transcript_id NM_000093.4
 CDS gene COL5A1
 CDS product collagen alpha-1(V) chain isoform 1 preproprotein
 CDS protein_id NP_000084.3
 CDS translation MDVHTRWKARSALRPGAPLLPPLLLLLLWAPPPSRAAQP...
 ...

Variables can be (re)initialized with an explicit literal value inside parentheses:

 -block Author -sep " " -tab "" -element "&COM" Initials,LastName -COM "(,)"

Entrez Direct: E-utilities on the Unix Command Line 15

They can also be used as the first argument in a conditional statement:

 -CHR Chromosome -block GenomicInfoType -if "&CHR" -differs-from ChrLoc

Using a double-hyphen (e.g., ‑‑STATS) appends a value to the variable.

In addition, a variable can also save the the modified data resulting from an ‑element variant operation. This
allows multiple sequential transitions within a single xtract command:

 -END -sum "Start,Length" -MID -avg "Start,&END"

All variables are reset when the next record is processed.

Conditional Execution
Conditional processing commands (‑if, ‑unless, ‑and, ‑or, and ‑else) restrict object exploration by data
content. They check to see if the named field is within the scope, and may be used in conjunction with string,
numeric, or object constraints to require an additional match by value. For example:

 esearch -db pubmed -query "Havran W [AUTH]" |
 efetch -format xml |
 xtract -pattern PubmedArticle -if "#Author" -lt 14 \
 -block Author -if LastName -is-not Havran \
 -sep ", " -tab "\n" -element LastName,Initials[1:1] |
 sort-uniq-count-rank

selects papers with fewer than 14 authors and prints a table of the most frequent collaborators, using a range to
keep only the first initial so that variants like "Berg, CM" and "Berg, C" are combined:

 34 Witherden, D
 15 Boismenu, R
 12 Jameson, J
 10 Allison, J
 10 Fitch, F
 ...

Numeric constraints can also compare the integer values of two fields. This can be used to find genes that are
encoded on the minus strand of a nucleotide sequence:

 -if ChrStart -gt ChrStop

Object constraints will compare the string values of two named fields, and can look for internal inconsistencies
between fields whose contents should (in most cases) be identical:

 -if Chromosome -differs-from ChrLoc

The ‑position command restricts presentation of objects by relative location or index number:

 -block Author -position last -sep ", " -element LastName,Initials

Multiple conditions are specified with ‑and and ‑or commands:

 -if @score -equals 1 -or @score -starts-with 0.9

The ‑else command can supply alternative ‑element or ‑lbl instructions to be run if the condition is not
satisfied:

 -if MapLocation -element MapLocation -else -lbl "\-"

but setting a default value with ‑def may be more convenient in simple cases.

16 Entrez Programming Utilities Help

Parallel ‑if and ‑unless statements can be used to provide a more complex response to alternative conditions
that include nested explorations.

Post-processing Functions
Elink ‑cited can perform a reverse citation lookup, thanks to a data service provided by the NIH Open Citation
Collection. The extracted author names can be processed by piping to a chain of Unix utilities:

 esearch -db pubmed -query "Beadle GW [AUTH]" |
 elink -cited |
 efetch -format docsum |
 xtract -pattern Author -element Name |
 sort -f | uniq -i -c

which produces an alphabetized count of authors who cited the original papers:

 1 Abellan-Schneyder I
 1 Abramowitz M
 1 ABREU LA
 1 ABREU RR
 1 Abril JF
 1 Abächerli E
 1 Achetib N
 1 Adams CM
 2 ADELBERG EA
 1 Adrian AB
 ...

Rather than always having to retype a series of common post-processing instructions, frequently-used
combinations of Unix commands can be placed in a function, stored in an alias file (e.g., the
user's .bash_profile), and executed by name. For example:

 SortUniqCountRank() {
 grep '.' |
 sort -f |
 uniq -i -c |
 awk '{ n=$1; sub(/[\t]*[0-9]+[\t]/, ""); print n "\t" $0 }' |
 sort -t "$(printf '\t')" -k 1,1nr -k 2f
 }
 alias sort-uniq-count-rank='SortUniqCountRank'

(An enhanced version of sort-uniq-count-rank that accepts customization arguments is now included with
EDirect as a stand-alone script.)

The raw author names can be passed directly to the sort-uniq-count-rank script:

 esearch -db pubmed -query "Beadle GW [AUTH]" |
 elink -cited |
 efetch -format docsum |
 xtract -pattern Author -element Name |
 sort-uniq-count-rank

to produce a tab-delimited ranked list of authors who most often cited the original papers:

 17 Hawley RS
 13 Beadle GW
 13 PERKINS DD
 11 Glass NL
 11 Vécsei L
 10 Toldi J

Entrez Direct: E-utilities on the Unix Command Line 17

 9 TATUM EL
 8 Ephrussi B
 8 LEDERBERG J
 ...

Similarly, elink ‑cites uses NIH OCC data to return an article's reference list.

Other scripts for tab-delimited files include sort-table, reorder-columns, and align-columns. Unix parameter
expansion requires filter-columns and print-columns arguments to be in single quotes.

Note that EDirect commands can also be used inside Unix functions or scripts.

Viewing an XML Hierarchy
Piping a PubmedArticle XML object to xtract ‑outline will give an indented overview of the XML hierarchy:

 PubmedArticle
 MedlineCitation
 PMID
 DateCompleted
 Year
 Month
 Day
 ...
 Article
 Journal
 ...
 Title
 ISOAbbreviation
 ArticleTitle
 ...
 Abstract
 AbstractText
 AuthorList
 Author
 LastName
 ForeName
 Initials
 AffiliationInfo
 Affiliation
 Author
 ...

Using xtract ‑synopsis or ‑contour will show the full paths to all nodes or just the terminal (leaf) nodes,
respectively. Piping those results to "sort-uniq-count" will produce a table of unique paths.

Code Nesting Comparison
Sketching with indented pseudo code can clarify relative nesting levels. The extraction command:

 xtract -pattern PubmedArticle \
 -block Author -element Initials,LastName \
 -block MeshHeading \
 -if QualifierName \
 -element DescriptorName \
 -subset QualifierName -element QualifierName

where the rank of the argument name controls the nesting depth, could be represented as a computer program in
pseudo code by:

18 Entrez Programming Utilities Help

 for pat = each PubmedArticle {
 for blk = each pat.Author {
 print blk.Initials blk.LastName
 }
 for blk = each pat.MeSHTerm {
 if blk.Qual is present {
 print blk.MeshName
 for sbs = each blk.Qual {
 print sbs.QualName
 }
 }
 }
 }

where the brace indentation count controls the nesting depth.

Extra arguments are held in reserve to provide additional levels of organization, should the need arise in the
future for processing complex, deeply-nested XML data. The exploration commands below ‑pattern, in order of
rank, are:

 -path
 -division
 -group
 -branch
 -block
 -section
 -subset
 -unit

Starting xtract exploration with ‑block, and expanding with ‑group and ‑subset, leaves additional level names
that can be used wherever needed without having to redesign the entire command.

Complex Objects

Author Exploration
What's in a name? That which we call an author by any other name may be a consortium, investigator, or editor:

 <PubmedArticle>
 <MedlineCitation>
 <PMID>99999999</PMID>
 <Article>
 <AuthorList>
 <Author>
 <LastName>Tinker</LastName>
 </Author>
 <Author>
 <LastName>Evers</LastName>
 </Author>
 <Author>
 <LastName>Chance</LastName>
 </Author>
 <Author>
 <CollectiveName>FlyBase Consortium</CollectiveName>
 </Author>
 </AuthorList>
 </Article>
 <InvestigatorList>

Entrez Direct: E-utilities on the Unix Command Line 19

 <Investigator>
 <LastName>Alpher</LastName>
 </Investigator>
 <Investigator>
 <LastName>Bethe</LastName>
 </Investigator>
 <Investigator>
 <LastName>Gamow</LastName>
 </Investigator>
 </InvestigatorList>
 </MedlineCitation>
 </PubmedArticle>

Within the record, ‑element exploration on last name:

 xtract -pattern PubmedArticle -element LastName

prints each last name, but does not match the consortium:

 Tinker Evers Chance Alpher Bethe Gamow

Limiting to the author list:

 xtract -pattern PubmedArticle -block AuthorList -element LastName

excludes the investigators:

 Tinker Evers Chance

Using ‑num on each type of object:

 xtract -pattern PubmedArticle -num Author Investigator LastName CollectiveName

displays the various object counts:

 4 3 6 1

Date Selection
Dates come in all shapes and sizes:

 <PubmedArticle>
 <MedlineCitation>
 <PMID>99999999</PMID>
 <DateCompleted>
 <Year>2011</Year>
 </DateCompleted>
 <DateRevised>
 <Year>2012</Year>
 </DateRevised>
 <Article>
 <Journal>
 <JournalIssue>
 <PubDate>
 <Year>2013</Year>
 </PubDate>
 </JournalIssue>
 </Journal>
 <ArticleDate>
 <Year>2014</Year>
 </ArticleDate>
 </Article>

20 Entrez Programming Utilities Help

 </MedlineCitation>
 <PubmedData>
 <History>
 <PubMedPubDate PubStatus="received">
 <Year>2015</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="accepted">
 <Year>2016</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="entrez">
 <Year>2017</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="pubmed">
 <Year>2018</Year>
 </PubMedPubDate>
 <PubMedPubDate PubStatus="medline">
 <Year>2019</Year>
 </PubMedPubDate>
 </History>
 </PubmedData>
 </PubmedArticle>

Within the record, ‑element exploration on the year:

 xtract -pattern PubmedArticle -element Year

finds and prints all nine instances:

 2011 2012 2013 2014 2015 2016 2017 2018 2019

Using ‑block to limit the scope:

 xtract -pattern PubmedArticle -block History -element Year

prints only the five years within the History object:

 2015 2016 2017 2018 2019

Inserting a conditional statement to limit element selection to a date with a specific attribute:

 xtract -pattern PubmedArticle -block History \
 -if @PubStatus -equals "pubmed" -element Year

surprisingly still prints all five years within History:

 2015 2016 2017 2018 2019

This is because the ‑if command uses the same exploration logic as ‑element, but is designed to declare success
if it finds a match anywhere within the current scope. There is indeed a "pubmed" attribute within History, in
one of the five PubMedPubDate child objects, so the test succeeds. Thus, ‑element is given free rein to do its own
exploration in History, and prints all five years.

The solution is to explore the individual PubMedPubDate objects:

 xtract -pattern PubmedArticle -block PubMedPubDate \
 -if @PubStatus -equals "pubmed" -element Year

This visits each PubMedPubDate separately, with the ‑if test matching only the indicated date type, thus
returning only the desired year:

 2018

Entrez Direct: E-utilities on the Unix Command Line 21

PMID Extraction
Because of the presence of a CommentsCorrections object:

 <PubmedArticle>
 <MedlineCitation>
 <PMID>99999999</PMID>
 <CommentsCorrectionsList>
 <CommentsCorrections RefType="ErratumFor">
 <PMID>88888888</PMID>
 </CommentsCorrections>
 </CommentsCorrectionsList>
 </MedlineCitation>
 </PubmedArticle>

attempting to print the record's PubMed Identifier:

 xtract -pattern PubmedArticle -element PMID

also returns the PMID of the comment:

 99999999 88888888

Using an exploration command cannot exclude the second instance, because it would need a parent node unique
to the first element, and the chain of parents to the first PMID:

 PubmedArticle/MedlineCitation

is a subset of the chain of parents to the second PMID:

 PubmedArticle/MedlineCitation/CommentsCorrectionList/CommentsCorrections

Although ‑first PMID will work in this particular case, the more general solution is to limit by subpath with the
parent / child construct:

 xtract -pattern PubmedArticle -element MedlineCitation/PMID

That would work even if the order of objects were reversed.

Heterogeneous Data
XML objects can contain a heterogeneous mix of components. For example:

 efetch -db pubmed -id 21433338,17247418 -format xml

returns a mixture of book and journal records:

 <PubmedArticleSet>
 <PubmedBookArticle>
 <BookDocument>
 ...
 </PubmedBookData>
 </PubmedBookArticle>
 <PubmedArticle>
 <MedlineCitation>
 ...
 </PubmedData>
 </PubmedArticle>
 </PubmedArticleSet>

22 Entrez Programming Utilities Help

The parent / star construct is used to visit the individual components, even though they may have different
names. Piping the output to:

 xtract -pattern "PubmedArticleSet/*" -element "*"

separately prints the entirety of each XML component:

 <PubmedBookArticle><BookDocument> ... </PubmedBookData></PubmedBookArticle>
 <PubmedArticle><MedlineCitation> ... </PubmedData></PubmedArticle>

Use of the parent / child construct can isolate objects of the same name that differ by their location in the XML
hierarchy. For example:

 efetch -db pubmed -id 21433338,17247418 -format xml |
 xtract -pattern "PubmedArticleSet/*" \
 -group "BookDocument/AuthorList" -tab "\n" -element LastName \
 -group "Book/AuthorList" -tab "\n" -element LastName \
 -group "Article/AuthorList" -tab "\n" -element LastName

writes separate lines for book/chapter authors, book editors, and article authors:

 Fauci Desrosiers
 Coffin Hughes Varmus
 Lederberg Cavalli Lederberg

Simply exploring with individual arguments:

 -group BookDocument -block AuthorList -element LastName

would visit the editors (at BookDocument/Book/AuthorList) as well as the authors (at BookDocument/
AuthorList), and print names in order of appearance in the XML:

 Coffin Hughes Varmus Fauci Desrosiers

(In this particular example the book author lists could be distinguished by using ‑if "@Type" ‑equals authors or
‑if "@Type" ‑equals editors, but exploring by parent / child is a general position-based approach.)

Recursive Definitions
Certain XML objects returned by efetch are recursively defined, including Taxon in ‑db taxonomy and Gene-
commentary in ‑db gene. Thus, they can contain nested objects with the same XML tag.

Retrieving a set of taxonomy records:

 efetch -db taxonomy -id 9606,7227 -format xml

produces XML with nested Taxon objects (marked below with line references) for each rank in the taxonomic
lineage:

 <TaxaSet>
1 <Taxon>
 <TaxId>9606</TaxId>
 <ScientificName>Homo sapiens</ScientificName>
 ...
 <LineageEx>
2 <Taxon>
 <TaxId>131567</TaxId>
 <ScientificName>cellular organisms</ScientificName>
 <Rank>no rank</Rank>
3 </Taxon>
4 <Taxon>

Entrez Direct: E-utilities on the Unix Command Line 23

 <TaxId>2759</TaxId>
 <ScientificName>Eukaryota</ScientificName>
 <Rank>superkingdom</Rank>
5 </Taxon>
 ...
 </LineageEx>
 ...
6 </Taxon>
7 <Taxon>
 <TaxId>7227</TaxId>
 <ScientificName>Drosophila melanogaster</ScientificName>
 ...
8 </Taxon>
 </TaxaSet>

Xtract tracks XML object nesting to determine that the <Taxon> start tag on line 1 is closed by the </Taxon>
stop tag on line 6, and not by the first </Taxon> encountered on line 3.

When a recursive object (e.g., Taxon) is given to an exploration command:

 efetch -db taxonomy -id 9606,7227,10090 -format xml |
 xtract -pattern Taxon \
 -element TaxId ScientificName GenbankCommonName Division

subsequent ‑element commands are blocked from descending into the internal objects, and return information
only for the main entries:

 9606 Homo sapiens human Primates
 7227 Drosophila melanogaster fruit fly Invertebrates
 10090 Mus musculus house mouse Rodents

The star / child construct will skip past the outer start tag:

 efetch -db taxonomy -id 9606,7227,10090 -format xml |
 xtract -pattern Taxon -block "*/Taxon" \
 -tab "\n" -element TaxId,ScientificName

to visit the next level of nested objects individually:

 131567 cellular organisms
 2759 Eukaryota
 33154 Opisthokonta
 ...

Recursive objects can be fully explored with a double star / child construct:

 esearch -db gene -query "DMD [GENE] AND human [ORGN]" |
 efetch -format xml |
 xtract -pattern Entrezgene -block "**/Gene-commentary" \
 -tab "\n" -element Gene-commentary_type@value,Gene-commentary_accession

which visits every child object regardless of nesting depth:

 genomic NC_000023
 mRNA XM_006724469
 peptide XP_006724532
 mRNA XM_011545467
 peptide XP_011543769
 ...

24 Entrez Programming Utilities Help

Additional Elink Options
Elink has several additional modes that can be specified with the ‑cmd argument. When not using the default
"neighbor_history" command, elink will return an eLinkResult XML object, with the links for each UID
presented in separate blocks. For example, the "neighbor" command:

 esearch -db pubmed -query "Hoffmann PC [AUTH] AND dopamine [MAJR]" |
 elink -related -cmd neighbor |
 xtract -pattern LinkSetDb -element Id

will show the original PMID in the first column and related article PMIDs in subsequent columns:

 1504781 11754494 3815119 1684029 14614914 12128255 ...
 1684029 3815119 1504781 8097798 17161385 14755628 ...
 2572612 2903614 6152036 2905789 9483560 1352865 ...
 ...

The "acheck" command returns all available link names for each record:

 esearch -db pubmed -query "Federhen S [AUTH]" |
 elink -cmd acheck |
 xtract -pattern LinkSet -tab "\n" -element IdLinkSet/Id \
 -block LinkInfo -tab "\n" -element LinkName

printing each on its own line:

 25510495
 pubmed_images
 pubmed_pmc
 pubmed_pmc_local
 pubmed_pmc_refs
 pubmed_pubmed
 pubmed_pubmed_citedin
 ...

The "prlinks" command can obtain the URL reference to the publisher web page for an article. The Unix "xargs"
command calls elink separately for each identifier:

 epost -db pubmed -id 22966225,19880848 |
 efetch -format uid |
 xargs -n 1 elink -db pubmed -cmd prlinks -id |
 xtract -pattern LinkSet -first Id -element ObjUrl/Url

Repackaging XML Results
Splitting abstract paragraphs into individual words, while using XML reformatting commands:

 efetch -db pubmed -id 2539356 -format xml |
 xtract -stops -rec Rec -pattern PubmedArticle \
 -enc Paragraph -wrp Word -words AbstractText

generates:

 ...
 <Paragraph>
 <Word>the</Word>
 <Word>tn3</Word>
 <Word>transposon</Word>
 <Word>inserts</Word>
 ...

Entrez Direct: E-utilities on the Unix Command Line 25

 <Word>was</Word>
 <Word>necessary</Word>
 <Word>for</Word>
 <Word>immunity</Word>
 </Paragraph>
 ...

with the words from each abstract instance encased in a separate parent object. Word counts for each paragraph
could then be calculated by piping to:

 xtract -pattern Rec -block Paragraph -num Word

Multi-Step Transformations
Although xtract provides ‑element variants to do simple data manipulation, more complex tasks are sometimes
best handled by being broken up into a series of simpler transformations. These are also known as structured
data "processing chains".

Document summaries for two bacterial chromosomes:

 efetch -db nuccore -id U00096,CP002956 -format docsum |

contain several individual fields and a complex series of self-closing Stat objects:

 <DocumentSummary>
 <Id>545778205</Id>
 <Caption>U00096</Caption>
 <Title>Escherichia coli str. K-12 substr. MG1655, complete genome</Title>
 <CreateDate>1998/10/13</CreateDate>
 <UpdateDate>2020/09/23</UpdateDate>
 <TaxId>511145</TaxId>
 <Slen>4641652</Slen>
 <Biomol>genomic</Biomol>
 <MolType>dna</MolType>
 <Topology>circular</Topology>
 <Genome>chromosome</Genome>
 <Completeness>complete</Completeness>
 <GeneticCode>11</GeneticCode>
 <Organism>Escherichia coli str. K-12 substr. MG1655</Organism>
 <Strain>K-12</Strain>
 <BioSample>SAMN02604091</BioSample>
 <Statistics>
 <Stat type="Length" count="4641652"/>
 <Stat type="all" count="9198"/>
 <Stat type="cdregion" count="4302"/>
 <Stat type="cdregion" subtype="CDS" count="4285"/>
 <Stat type="cdregion" subtype="CDS/pseudo" count="17"/>
 <Stat type="gene" count="4609"/>
 <Stat type="gene" subtype="Gene" count="4464"/>
 <Stat type="gene" subtype="Gene/pseudo" count="145"/>
 <Stat type="rna" count="187"/>
 <Stat type="rna" subtype="ncRNA" count="79"/>
 <Stat type="rna" subtype="rRNA" count="22"/>
 <Stat type="rna" subtype="tRNA" count="86"/>
 <Stat source="all" type="Length" count="4641652"/>
 <Stat source="all" type="all" count="13500"/>
 <Stat source="all" type="cdregion" count="4302"/>
 <Stat source="all" type="gene" count="4609"/>
 <Stat source="all" type="prot" count="4302"/>

26 Entrez Programming Utilities Help

 <Stat source="all" type="rna" count="187"/>
 </Statistics>
 <AccessionVersion>U00096.3</AccessionVersion>
 </DocumentSummary>
 <DocumentSummary>
 <Id>342852136</Id>
 <Caption>CP002956</Caption>
 <Title>Yersinia pestis A1122, complete genome</Title>
 ...

which make extracting the single "best" value for gene count a non-trivial exercise.

In addition to repackaging commands that surround extracted values with XML tags, the ‑element "*" construct
prints the entirety of the current scope, including its XML wrapper. Piping the document summaries to:

 xtract -set Set -rec Rec -pattern DocumentSummary \
 -block DocumentSummary -pkg Common \
 -wrp Accession -element AccessionVersion \
 -wrp Organism -element Organism \
 -wrp Length -element Slen \
 -wrp Title -element Title \
 -wrp Date -element CreateDate \
 -wrp Biomol -element Biomol \
 -wrp MolType -element MolType \
 -block Stat -if @type -equals gene -pkg Gene -element "*" \
 -block Stat -if @type -equals rna -pkg RNA -element "*" \
 -block Stat -if @type -equals cdregion -pkg CDS -element "*" |

encloses several fields in a Common block, and packages statistics on gene, RNA, and coding region features into
separate sections of a new XML object:

 ...
 <Rec>
 <Common>
 <Accession>U00096.3</Accession>
 <Organism>Escherichia coli str. K-12 substr. MG1655</Organism>
 <Length>4641652</Length>
 <Title>Escherichia coli str. K-12 substr. MG1655, complete genome</Title>
 <Date>1998/10/13</Date>
 <Biomol>genomic</Biomol>
 <MolType>dna</MolType>
 </Common>
 <Gene>
 <Stat type="gene" count="4609"/>
 <Stat type="gene" subtype="Gene" count="4464"/>
 <Stat type="gene" subtype="Gene/pseudo" count="145"/>
 <Stat source="all" type="gene" count="4609"/>
 </Gene>
 <RNA>
 <Stat type="rna" count="187"/>
 <Stat type="rna" subtype="ncRNA" count="79"/>
 <Stat type="rna" subtype="rRNA" count="22"/>
 <Stat type="rna" subtype="tRNA" count="86"/>
 <Stat source="all" type="rna" count="187"/>
 </RNA>
 <CDS>
 <Stat type="cdregion" count="4302"/>
 <Stat type="cdregion" subtype="CDS" count="4285"/>
 <Stat type="cdregion" subtype="CDS/pseudo" count="17"/>

Entrez Direct: E-utilities on the Unix Command Line 27

 <Stat source="all" type="cdregion" count="4302"/>
 </CDS>
 </Rec>
 ...

With statistics from different types of feature now segregated in their own substructures, total counts for each
can be extracted with the ‑first command:

 xtract -set Set -rec Rec -pattern Rec \
 -block Common -element "*" \
 -block Gene -wrp GeneCount -first Stat@count \
 -block RNA -wrp RnaCount -first Stat@count \
 -block CDS -wrp CDSCount -first Stat@count |

This rewraps the data into a third XML form containing specific feature counts:

 ...
 <Rec>
 <Common>
 <Accession>U00096.3</Accession>
 <Organism>Escherichia coli str. K-12 substr. MG1655</Organism>
 <Length>4641652</Length>
 <Title>Escherichia coli str. K-12 substr. MG1655, complete genome</Title>
 <Date>1998/10/13</Date>
 <Biomol>genomic</Biomol>
 <MolType>dna</MolType>
 </Common>
 <GeneCount>4609</GeneCount>
 <RnaCount>187</RnaCount>
 <CDSCount>4302</CDSCount>
 </Rec>
 ...

without requiring extraction commands for the individual elements in the Common block to be repeated at each
step.

Assuming the contents are satisfactory, passing the last structured form to:

 xtract \
 -head accession organism length gene_count rna_count \
 -pattern Rec -def "-" \
 -element Accession Organism Length GeneCount RnaCount

produces a tab-delimited table with the desired values:

 accession organism length gene_count rna_count
 U00096.3 Escherichia coli ... 4641652 4609 187
 CP002956.1 Yersinia pestis A1122 4553770 4217 86

If a different order of fields is desired after the final xtract has been run, piping to:

 reorder-columns 1 3 5 4

will rearrange the output, including the column headings:

 accession length rna_count gene_count
 U00096.3 4641652 187 4609
 CP002956.1 4553770 86 4217

28 Entrez Programming Utilities Help

Sequence Records

NCBI Data Model for Sequence Records
The NCBI data model for sequence records is based on the central dogma of molecular biology. Sequences,
including genomic DNA, messenger RNAs, and protein products, are "instantiated" with the actual sequence
letters, and are assigned identifiers (e.g., accession numbers) for reference.

Each sequence can have multiple features, which contain information about the biology of a given region,
including the transformations involved in gene expression. Each feature can have multiple qualifiers, which store
specific details about that feature (e.g., name of the gene, genetic code used for protein translation, accession of
the product sequence, cross-references to external databases).

A gene feature indicates the location of a heritable region of nucleic acid that confers a measurable phenotype.
An mRNA feature on genomic DNA represents the exonic and untranslated regions of the message that remain
after transcription and splicing. A coding region (CDS) feature has a product reference to the translated protein.

Entrez Direct: E-utilities on the Unix Command Line 29

Since messenger RNA sequences are not always submitted with a genomic region, CDS features (which model
the travel of ribosomes on transcript molecules) are traditionally annotated on the genomic sequence, with
locations that encode the exonic intervals.

A qualifier can be dynamically generated from underlying data for the convenience of the user. Thus, the
sequence of a mature peptide may be extracted from the mat_peptide feature's location on the precursor protein
and displayed in a /peptide qualifier, even if a mature peptide is not instantiated.

Sequence Records in INSDSeq XML
Sequence records can be retrieved in an XML version of the GenBank or GenPept flatfile. The query:

 efetch -db protein -id 26418308,26418074 -format gpc

returns a set of INSDSeq objects:

 <INSDSet>
 <INSDSeq>
 <INSDSeq_locus>AAN78128</INSDSeq_locus>
 <INSDSeq_length>17</INSDSeq_length>
 <INSDSeq_moltype>AA</INSDSeq_moltype>
 <INSDSeq_topology>linear</INSDSeq_topology>
 <INSDSeq_division>INV</INSDSeq_division>
 <INSDSeq_update-date>03-JAN-2003</INSDSeq_update-date>
 <INSDSeq_create-date>10-DEC-2002</INSDSeq_create-date>
 <INSDSeq_definition>alpha-conotoxin ImI precursor, partial [Conus
 imperialis]</INSDSeq_definition>
 <INSDSeq_primary-accession>AAN78128</INSDSeq_primary-accession>
 <INSDSeq_accession-version>AAN78128.1</INSDSeq_accession-version>
 <INSDSeq_other-seqids>
 <INSDSeqid>gb|AAN78128.1|</INSDSeqid>
 <INSDSeqid>gi|26418308</INSDSeqid>
 </INSDSeq_other-seqids>
 <INSDSeq_source>Conus imperialis</INSDSeq_source>
 <INSDSeq_organism>Conus imperialis</INSDSeq_organism>
 <INSDSeq_taxonomy>Eukaryota; Metazoa; Lophotrochozoa; Mollusca;
 Gastropoda; Caenogastropoda; Hypsogastropoda; Neogastropoda;
 Conoidea; Conidae; Conus</INSDSeq_taxonomy>
 <INSDSeq_references>
 <INSDReference>
 ...

Biological features and qualifiers (shown here in GenPept format):

 FEATURES Location/Qualifiers
 source 1..17
 /organism="Conus imperialis"
 /db_xref="taxon:35631"
 /country="Philippines"
 Protein <1..17
 /product="alpha-conotoxin ImI precursor"
 mat_peptide 5..16
 /product="alpha-conotoxin ImI"
 /note="the C-terminal glycine of the precursor is post
 translationally removed"
 /calculated_mol_wt=1357
 /peptide="GCCSDPRCAWRC"
 CDS 1..17

30 Entrez Programming Utilities Help

 /coded_by="AY159318.1:<1..54"
 /note="nAChR antagonist"

are presented in INSDSeq XML as structured objects:

 ...
 <INSDFeature>
 <INSDFeature_key>mat_peptide</INSDFeature_key>
 <INSDFeature_location>5..16</INSDFeature_location>
 <INSDFeature_intervals>
 <INSDInterval>
 <INSDInterval_from>5</INSDInterval_from>
 <INSDInterval_to>16</INSDInterval_to>
 <INSDInterval_accession>AAN78128.1</INSDInterval_accession>
 </INSDInterval>
 </INSDFeature_intervals>
 <INSDFeature_quals>
 <INSDQualifier>
 <INSDQualifier_name>product</INSDQualifier_name>
 <INSDQualifier_value>alpha-conotoxin ImI</INSDQualifier_value>
 </INSDQualifier>
 <INSDQualifier>
 <INSDQualifier_name>note</INSDQualifier_name>
 <INSDQualifier_value>the C-terminal glycine of the precursor is
 post translationally removed</INSDQualifier_value>
 </INSDQualifier>
 <INSDQualifier>
 <INSDQualifier_name>calculated_mol_wt</INSDQualifier_name>
 <INSDQualifier_value>1357</INSDQualifier_value>
 </INSDQualifier>
 <INSDQualifier>
 <INSDQualifier_name>peptide</INSDQualifier_name>
 <INSDQualifier_value>GCCSDPRCAWRC</INSDQualifier_value>
 </INSDQualifier>
 </INSDFeature_quals>
 </INSDFeature>
 ...

The data hierarchy is easily explored using a ‑pattern {sequence} ‑group {feature} ‑block {qualifier} construct.
However, feature and qualifier names are indicated in data values, not XML element tags, and require ‑if and
‑equals to select the desired object and content.

Generating Qualifier Extraction Commands
As a convenience for exploring sequence records, the xtract ‑insd helper function generates the appropriate
nested extraction commands from feature and qualifier names on the command line. (Two computed qualifiers,
sub_sequence and feat_location, are also supported.)

Running xtract ‑insd in an isolated command prints a new xtract statement that can then be copied, edited if
necessary, and pasted into other queries. Running the ‑insd command within a multi-step pipe dynamically
executes the automatically-constructed query.

Providing an optional (complete/partial) location indication, a feature key, and then one or more qualifier
names:

 xtract -insd complete mat_peptide product peptide

Entrez Direct: E-utilities on the Unix Command Line 31

creates a new xtract statement that will produce a table of qualifier values from mature peptide features with
complete locations. The statement starts with instructions to record the accession and find features of the
indicated type:

 xtract -pattern INSDSeq -ACCN INSDSeq_accession-version -SEQ INSDSeq_sequence \
 -group INSDFeature -if INSDFeature_key -equals mat_peptide \
 -branch INSDFeature -unless INSDFeature_partial5 -or INSDFeature_partial3 \
 -clr -pfx "\n" -element "&ACCN" \

Each qualifier then generates custom extraction code that is appended to the growing query. For example:

 -block INSDQualifier \
 -if INSDQualifier_name -equals product \
 -element INSDQualifier_value

Snail Venom Peptide Sequences
Incorporating the xtract ‑insd command in a search on cone snail venom:

 esearch -db pubmed -query "conotoxin" |
 elink -target protein |
 efilter -query "mat_peptide [FKEY]" |
 efetch -format gpc |
 xtract -insd complete mat_peptide "%peptide" product mol_wt peptide |

prints the accession number, mature peptide length, product name, calculated molecular weight, and amino acid
sequence for a sample of neurotoxic peptides:

 AAN78128.1 12 alpha-conotoxin ImI 1357 GCCSDPRCAWRC
 ADB65789.1 20 conotoxin Cal 16 2134 LEMQGCVCNANAKFCCGEGR
 ADB65788.1 20 conotoxin Cal 16 2134 LEMQGCVCNANAKFCCGEGR
 AGO59814.1 32 del13b conotoxin 3462 DCPTSCPTTCANGWECCKGYPCVRQHCSGCNH
 AAO33169.1 16 alpha-conotoxin GIC 1615 GCCSHPACAGNNQHIC
 AAN78279.1 21 conotoxin Vx-II 2252 WIDPSHYCCCGGGCTDDCVNC
 AAF23167.1 31 BeTX toxin 3433 CRAEGTYCENDSQCCLNECCWGGCGHPCRHP
 ABW16858.1 15 marmophin 1915 DWEYHAHPKPNSFWT
 ...

Piping the results to a series of Unix commands and EDirect scripts:

 grep -i conotoxin |
 filter-columns '10 <= $2 && $2 <= 30' |
 sort-table -u -k 5 |
 sort-table -k 2,2n |
 align-columns -

filters by product name, limits the results to a specified range of peptide lengths, removes redundant sequences,
sorts the table by peptide length, and aligns the columns for cleaner printing:

 AAN78127.1 12 alpha-conotoxin ImII 1515 ACCSDRRCRWRC
 AAN78128.1 12 alpha-conotoxin ImI 1357 GCCSDPRCAWRC
 ADB43130.1 15 conotoxin Cal 1a 1750 KCCKRHHGCHPCGRK
 ADB43131.1 15 conotoxin Cal 1b 1708 LCCKRHHGCHPCGRT
 AAO33169.1 16 alpha-conotoxin GIC 1615 GCCSHPACAGNNQHIC
 ADB43128.1 16 conotoxin Cal 5.1 1829 DPAPCCQHPIETCCRR
 AAD31913.1 18 alpha A conotoxin Tx2 2010 PECCSHPACNVDHPEICR
 ADB43129.1 18 conotoxin Cal 5.2 2008 MIQRSQCCAVKKNCCHVG
 ADB65789.1 20 conotoxin Cal 16 2134 LEMQGCVCNANAKFCCGEGR
 ADD97803.1 20 conotoxin Cal 1.2 2206 AGCCPTIMYKTGACRTNRCR
 AAD31912.1 21 alpha A conotoxin Tx1 2304 PECCSDPRCNSSHPELCGGRR

32 Entrez Programming Utilities Help

 AAN78279.1 21 conotoxin Vx-II 2252 WIDPSHYCCCGGGCTDDCVNC
 ADB43125.1 22 conotoxin Cal 14.2 2157 GCPADCPNTCDSSNKCSPGFPG
 ADD97802.1 23 conotoxin Cal 6.4 2514 GCWLCLGPNACCRGSVCHDYCPR
 AAD31915.1 24 O-superfamily conotoxin TxO2 2565 CYDSGTSCNTGNQCCSGWCIFVCL
 AAD31916.1 24 O-superfamily conotoxin TxO3 2555 CYDGGTSCDSGIQCCSGWCIFVCF
 AAD31920.1 24 omega conotoxin SVIA mutant 1 2495 CRPSGSPCGVTSICCGRCYRGKCT
 AAD31921.1 24 omega conotoxin SVIA mutant 2 2419 CRPSGSPCGVTSICCGRCSRGKCT
 ABE27006.1 25 conotoxin p114a 2917 FPRPRICNLACRAGIGHKYPFCHCR
 ABE27007.1 25 conotoxin p114.1 2645 GPGSAICNMACRLGQGHMYPFCNCN
 ...

The xtract ‑insdx variant:

 esearch -db protein -query "conotoxin" |
 efilter -query "mat_peptide [FKEY]" |
 efetch -format gpc |
 xtract -insdx complete mat_peptide "%peptide" product mol_wt peptide |
 xtract -pattern Rec -select product -contains conotoxin |
 xtract -pattern Rec -sort mol_wt

saves the output table directly as XML, with the XML tag names taken from the original qualifier names:

 ...
 <Rec>
 <accession>AAO33169.1</accession>
 <feature_key>mat_peptide</feature_key>
 <peptide_Len>16</peptide_Len>
 <product>alpha-conotoxin GIC</product>
 <mol_wt>1615</mol_wt>
 <peptide>GCCSHPACAGNNQHIC</peptide>
 </Rec>
 <Rec>
 <accession>AIC77099.1</accession>
 <feature_key>mat_peptide</feature_key>
 <peptide_Len>16</peptide_Len>
 <product>conotoxin Im1.2</product>
 <mol_wt>1669</mol_wt>
 <peptide>GCCSHPACNVNNPHIC</peptide>
 </Rec>
 ...

Qualifier names with prefix shortcuts "#" and "%" are modified to use "_Num" and "_Len" suffixes, respectively.

Missing Qualifiers
For records where a particular qualifier is missing:

 esearch -db protein -query "RAG1 [GENE] AND Mus musculus [ORGN]" |
 efetch -format gpc |
 xtract -insd source organism strain |
 sort-table -u -k 2,3

a dash is inserted as a placeholder:

 P15919.2 Mus musculus -
 AAO61776.1 Mus musculus 129/Sv
 NP_033045.2 Mus musculus C57BL/6
 EDL27655.1 Mus musculus mixed
 BAD69530.1 Mus musculus castaneus -

Entrez Direct: E-utilities on the Unix Command Line 33

 BAD69531.1 Mus musculus domesticus BALB/c
 BAD69532.1 Mus musculus molossinus MOA

Sequence Coordinates

Gene Positions
An understanding of sequence coordinate conventions is necessary in order to use gene positions to retrieve the
corresponding chromosome subregion with efetch or with the UCSC browser.

Sequence records displayed in GenBank or GenPept formats use a "one-based" coordinate system, with sequence
position numbers starting at "1":

 1 catgccattc gttgagttgg aaacaaactt gccggctagc cgcatacccg cggggctgga
 61 gaaccggctg tgtgcggcca cagccaccat cctggacaaa cccgaagacg tgagtgaggg
 121 tcggcgagaa cttgtgggct agggtcggac ctcccaatga cccgttccca tccccaggga
 181 ccccactccc ctggtaacct ctgaccttcc gtgtcctatc ctcccttcct agatcccttc
 ...

Under this convention, positions refer to the sequence letters themselves:

 C A T G C C A T T C
 1 2 3 4 5 6 7 8 9 10

and the position of the last base or residue is equal to the length of the sequence. The ATG initiation codon
above is at positions 2 through 4, inclusive.

For computer programs, however, using "zero-based" coordinates can simplify the arithmetic used for
calculations on sequence positions. The ATG codon in the 0-based representation is at positions 1 through 3.
(The UCSC browser uses a hybrid, half-open representation, where the start position is 0-based and the stop
position is 1-based.)

Software at NCBI will typically convert positions to 0-based coordinates upon input, perform whatever
calculations are desired, and then convert the results to a 1-based representation for display. These
transformations are done by simply subtracting 1 from the 1-based value or adding 1 to the 0-based value.

Coordinate Conversions
Retrieving the docsum for a particular gene:

 esearch -db gene -query "BRCA2 [GENE] AND human [ORGN]" |
 efetch -format docsum |

returns the chromosomal position of that gene in "zero-based" coordinates:

 ...
 <GenomicInfoType>
 <ChrLoc>13</ChrLoc>
 <ChrAccVer>NC_000013.11</ChrAccVer>
 <ChrStart>32315479</ChrStart>
 <ChrStop>32399671</ChrStop>
 <ExonCount>27</ExonCount>
 </GenomicInfoType>
 ...

Piping the document summary to an xtract command using ‑element:

 xtract -pattern GenomicInfoType -element ChrAccVer ChrStart ChrStop

34 Entrez Programming Utilities Help

obtains the accession and 0-based coordinate values:

 NC_000013.11 32315479 32399671

Efetch has ‑seq_start and ‑seq_stop arguments to retrieve a gene segment, but these expect the sequence
subrange to be in 1-based coordinates.

To address this problem, two additional efetch arguments, ‑chr_start and ‑chr_stop, were created to allow
direct use of the 0-based coordinates:

 efetch -db nuccore -format gb -id NC_000013.11 \
 -chr_start 32315479 -chr_stop 32399671

Xtract now has numeric extraction commands to assist with coordinate conversion. Selecting fields with an ‑inc
argument:

 xtract -pattern GenomicInfoType -element ChrAccVer -inc ChrStart ChrStop

obtains the accession and 0-based coordinates, then increments the positions to produce 1-based values:

 NC_000013.11 32315480 32399672

EDirect knows the policies for sequence positions in all relevant Entrez databases (e.g., gene, snp, dbvar), and
provides additional shortcuts for converting these to other conventions. For example:

 xtract -pattern GenomicInfoType -element ChrAccVer -1-based ChrStart ChrStop

understands that gene docsum ChrStart and ChrStop fields are 0-based, sees that the desired output is 1-based,
and translates the command to convert coordinates internally using the ‑inc logic. Similarly:

 -element ChrAccVer -ucsc-based ChrStart ChrStop

leaves the 0-based start value unchanged but increments the original stop value to produce the half-open form
that can be passed to the UCSC browser:

 NC_000013.11 32315479 32399672

Gene Records

Genes in a Region
To list all genes between two markers flanking the human X chromosome centromere, first retrieve the protein-
coding gene records on that chromosome:

 esearch -db gene -query "Homo sapiens [ORGN] AND X [CHR]" |
 efilter -status alive -type coding | efetch -format docsum |

Gene names and chromosomal positions are extracted by piping the records to:

 xtract -pattern DocumentSummary -NAME Name -DESC Description \
 -block GenomicInfoType -if ChrLoc -equals X \
 -min ChrStart,ChrStop -element "&NAME" "&DESC" |

Exploring each GenomicInfoType is needed because of pseudoautosomal regions at the ends of the X and Y
chromosomes:

 ...
 <GenomicInfo>
 <GenomicInfoType>
 <ChrLoc>X</ChrLoc>
 <ChrAccVer>NC_000023.11</ChrAccVer>

Entrez Direct: E-utilities on the Unix Command Line 35

 <ChrStart>155997630</ChrStart>
 <ChrStop>156013016</ChrStop>
 <ExonCount>14</ExonCount>
 </GenomicInfoType>
 <GenomicInfoType>
 <ChrLoc>Y</ChrLoc>
 <ChrAccVer>NC_000024.10</ChrAccVer>
 <ChrStart>57184150</ChrStart>
 <ChrStop>57199536</ChrStop>
 <ExonCount>14</ExonCount>
 </GenomicInfoType>
 </GenomicInfo>
 ...

Without limiting to chromosome X, the copy of IL9R near the "q" telomere of chromosome Y would be
erroneously placed with genes that are near the X chromosome centromere, shown here in between SPIN2A and
ZXDB:

 ...
 57121860 FAAH2 fatty acid amide hydrolase 2
 57133042 SPIN2A spindlin family member 2A
 57184150 IL9R interleukin 9 receptor
 57592010 ZXDB zinc finger X-linked duplicated B
 ...

With genes restricted to the X chromosome, results can be sorted by position, and then filtered and partitioned:

 sort-table -k 1,1n | cut -f 2- |
 grep -v pseudogene | grep -v uncharacterized | grep -v hypothetical |
 between-two-genes AMER1 FAAH2

to produce an ordered table of known genes located between the two markers:

 FAAH2 fatty acid amide hydrolase 2
 SPIN2A spindlin family member 2A
 ZXDB zinc finger X-linked duplicated B
 NLRP2B NLR family pyrin domain containing 2B
 ZXDA zinc finger X-linked duplicated A
 SPIN4 spindlin family member 4
 ARHGEF9 Cdc42 guanine nucleotide exchange factor 9
 AMER1 APC membrane recruitment protein 1

Gene Sequence
Genes encoded on the minus strand of a sequence:

 esearch -db gene -query "DDT [GENE] AND mouse [ORGN]" |
 efetch -format docsum |
 xtract -pattern GenomicInfoType -element ChrAccVer ChrStart ChrStop |

have coordinates ("zero-based" in docsums) where the start position is greater than the stop:

 NC_000076.6 75773373 75771232

These values can be read into Unix variables by a "while" loop:

 while IFS=$'\t' read acn str stp
 do
 efetch -db nuccore -format gb \
 -id "$acn" -chr_start "$str" -chr_stop "$stp"
 done

36 Entrez Programming Utilities Help

The variables can then be used to obtain the reverse-complemented subregion in GenBank format:

 LOCUS NC_000076 2142 bp DNA linear CON 08-AUG-2019
 DEFINITION Mus musculus strain C57BL/6J chromosome 10, GRCm38.p6 C57BL/6J.
 ACCESSION NC_000076 REGION: complement(75771233..75773374)
 ...
 gene 1..2142
 /gene="Ddt"
 mRNA join(1..159,462..637,1869..2142)
 /gene="Ddt"
 /product="D-dopachrome tautomerase"
 /transcript_id="NM_010027.1"
 CDS join(52..159,462..637,1869..1941)
 /gene="Ddt"
 /codon_start=1
 /product="D-dopachrome decarboxylase"
 /protein_id="NP_034157.1"
 /translation="MPFVELETNLPASRIPAGLENRLCAATATILDKPEDRVSVTIRP
 GMTLLMNKSTEPCAHLLVSSIGVVGTAEQNRTHSASFFKFLTEELSLDQDRIVIRFFP
 ...

The reverse complement of a plus-strand sequence range can be selected with efetch ‑revcomp

External Data

Querying External Services
The nquire program uses command-line arguments to obtain data from RESTful, CGI, or FTP servers. Queries
are built up from command-line arguments. Paths can be separated into components, which are combined with
slashes. Remaining arguments (starting with a dash) are tag/value pairs, with multiple values between tags
combined with commas.

For example, a POST request:

 nquire -url http://w1.weather.gov/xml/current_obs/KSFO.xml |
 xtract -pattern current_observation -tab "\n" \
 -element weather temp_f wind_dir wind_mph

returns the current weather report at the San Francisco airport:

 A Few Clouds
 54.0
 Southeast
 5.8

and a GET query:

 nquire -get http://collections.mnh.si.edu/services/resolver/resolver.php \
 -voucher "Birds:321082" |
 xtract -pattern Result -tab "\n" -element ScientificName StateProvince Country

returns information on a ruby-throated hummingbird specimen:

 Archilochus colubris
 Maryland
 United States

while an FTP request:

Entrez Direct: E-utilities on the Unix Command Line 37

 nquire -ftp ftp.ncbi.nlm.nih.gov pub/gdp ideogram_9606_GCF_000001305.14_850_V1 |
 grep acen | cut -f 1,2,6,7 | awk '/^X\t/'

returns data with the (estimated) sequence coordinates of the human X chromosome centromere (here showing
where the p and q arms meet):

 X p 58100001 61000000
 X q 61000001 63800000

Nquire can also produce a list of files in an FTP server directory:

 nquire -lst ftp://nlmpubs.nlm.nih.gov online/mesh/MESH_FILES/xmlmesh

or a list of FTP file names preceded by a column with the file sizes:

 nquire -dir ftp.ncbi.nlm.nih.gov gene/DATA

Finally, nquire can download FTP files to the local disk:

 nquire -dwn ftp.nlm.nih.gov online/mesh/MESH_FILES/xmlmesh desc2021.zip

If Aspera Connect is installed, the nquire ‑asp command will provide faster retrieval from NCBI servers:

 nquire -asp ftp.ncbi.nlm.nih.gov pubmed baseline pubmed22n0001.xml.gz

Without Aspera Connect, nquire ‑asp defaults to using the ‑dwn logic.

XML Namespaces
Namespace prefixes are followed by a colon, while a leading colon matches any prefix:

 nquire -url http://webservice.wikipathways.org getPathway -pwId WP455 |
 xtract -pattern "ns1:getPathwayResponse" -decode ":gpml" |

The embedded Graphical Pathway Markup Language object can then be processed:

 xtract -pattern Pathway -block Xref \
 -if @Database -equals "Entrez Gene" \
 -tab "\n" -element @ID

Automatic Xtract Format Conversion
Xtract can now detect and convert input data in JSON, text ASN.1, and GenBank/GenPept flatfile formats. The
transmute commands or shortcut scripts, described below, are only needed if you want to inspect the
intermediate XML, or to override default conversion settings.

JSON Arrays
Consolidated gene information for human β-globin retrieved from a curated biological database service
developed at the Scripps Research Institute:

 nquire -get http://mygene.info/v3 gene 3043 |

contains a multi-dimensional array of exon coordinates in JavaScript Object Notation (JSON) format:

 "position": [
 [
 5225463,
 5225726
],
 [

38 Entrez Programming Utilities Help

 5226576,
 5226799
],
 [
 5226929,
 5227071
]
],
 "strand": -1,

This can be converted to XML with transmute ‑j2x (or the json2xml shortcut script):

 transmute -j2x |

with the default"‑nest element" argument assigning distinct tag names to each level:

 <position>
 <position_E>5225463</position_E>
 <position_E>5225726</position_E>
 </position>
 ...

JSON Mixtures
A query for the human green-sensitive opsin gene:

 nquire -get http://mygene.info/v3/gene/2652 |
 transmute -j2x |

returns data containing a heterogeneous mixture of objects in the pathway section:

 <pathway>
 <reactome>
 <id>R-HSA-162582</id>
 <name>Signal Transduction</name>
 </reactome>
 ...
 <wikipathways>
 <id>WP455</id>
 <name>GPCRs, Class A Rhodopsin-like</name>
 </wikipathways>
 </pathway>

The parent / star construct is used to visit the individual components of a parent object without needing to
explicitly specify their names. For printing, the name of a child object is indicated by a question mark:

 xtract -pattern opt -group "pathway/*" \
 -pfc "\n" -element "?,name,id"

This displays a table of pathway database references:

 reactome Signal Transduction R-HSA-162582
 reactome Disease R-HSA-1643685
 ...
 reactome Diseases of the neuronal system R-HSA-9675143
 wikipathways GPCRs, Class A Rhodopsin-like WP455

Xtract ‑path can explore using multi-level object addresses, delimited by periods or slashes:

 xtract -pattern opt -path pathway.wikipathways.id -tab "\n" -element id

Entrez Direct: E-utilities on the Unix Command Line 39

Conversion of ASN.1
Similarly to ‑j2x, transmute ‑a2x (or asn2xml) will convert Abstract Syntax Notation 1 (ASN.1) text files to
XML.

Tables to XML
Tab-delimited files are easily converted to XML with transmute ‑t2x (or tbl2xml):

 nquire -ftp ftp.ncbi.nlm.nih.gov gene/DATA gene_info.gz |
 gunzip -c | grep -v NEWENTRY | cut -f 2,3 |
 transmute -t2x -set Set -rec Rec -skip 1 Code Name

This takes a series of command-line arguments with tag names for wrapping the individual columns, and skips
the first line of input, which contains header information, to generate a new XML file:

 ...
 <Rec>
 <Code>1246500</Code>
 <Name>repA1</Name>
 </Rec>
 <Rec>
 <Code>1246501</Code>
 <Name>repA2</Name>
 </Rec>
 ...

The transmute ‑t2x ‑header argument will obtain tag names from the first line of the file:

 nquire -ftp ftp.ncbi.nlm.nih.gov gene/DATA gene_info.gz |
 gunzip -c | grep -v NEWENTRY | cut -f 2,3 |
 transmute -t2x -set Set -rec Rec -header

CSV to XML
Similarly to ‑t2x, transmute ‑c2x (or csv2xml) will convert comma-separated values (CSV) files to XML.

GenBank Download
The entire set of GenBank format release files be downloaded with:

 fls=$(nquire -lst ftp.ncbi.nlm.nih.gov genbank)
 for div in \
 bct con env est gss htc htg inv mam pat \
 phg pln pri rod sts syn tsa una vrl vrt
 do
 echo "$fls" |
 grep ".seq.gz" | grep "gb${div}" |
 sort -V | skip-if-file-exists |
 nquire -asp ftp.ncbi.nlm.nih.gov genbank
 done

Unwanted divisions can be removed from the "for" loop to limit retrieval to specific sequencing classes or
taxonomic regions.

GenBank to XML
The most recent GenBank virus release file can also be downloaded from NCBI servers:

40 Entrez Programming Utilities Help

 nquire -lst ftp.ncbi.nlm.nih.gov genbank |
 grep "^gbvrl" | grep ".seq.gz" | sort -V |
 tail -n 1 | skip-if-file-exists |
 nquire -asp ftp.ncbi.nlm.nih.gov genbank

GenBank flatfile records can be selected by organism name or taxon identifier, or by presence or absence of an
arbitrary text string, with transmute ‑gbf (or filter-genbank):

 gunzip -c *.seq.gz | filter-genbank -taxid 11292 |

Since xtract can now read JSON, ASN.1, and GenBank formats, the filtered flatfiles can be piped to xtract to
obtain feature location intervals and underlying sequences of individual coding regions:

 xtract -insd CDS gene product feat_location sub_sequence

without the need for an explicit transmute ‑g2x (or gbf2xml) step.

GenPept to XML
The latest GenPept daily incremental update file can be downloaded:

 nquire -ftp ftp.ncbi.nlm.nih.gov genbank daily-nc Last.File |
 sed "s/flat/gnp/g" |
 nquire -ftp ftp.ncbi.nlm.nih.gov genbank daily-nc |
 gunzip -c | transmute -g2x |

and the extracted INSDSeq XML can be processed in a similar manner:

 xtract -pattern INSDSeq -select INSDQualifier_value -equals "taxon:2697049" |
 xtract -insd mat_peptide product sub_sequence

Local PubMed Cache
Fetching data from Entrez works well when a few thousand records are needed, but it does not scale for much
larger sets of data, where the time it takes to download becomes a limiting factor.

Recent advances in technology provide an affordable and practical alternative. High-performance NVMe solid-
state drives (which eliminate rotational delays for file access and bookkeeping operations) are readily available
for purchase. Modern high-capacity file systems, such as APFS (which uses 64-bit inodes) or Ext4 (which can be
configured for 100 million inodes), are now ubiquitous on contemporary computers. A judicious arrangement of
multi-level nested directories (each containing no more than 100 subfolders or record files) ensures maximally-
efficient use of these enhanced capabilities.

This combination of features allows local record storage (populated in advance from the PubMed FTP release
files) to be an effective replacement for on-demand network retrieval, while avoiding the need to install and
support a legacy database product on your computer.

Random Access Archive
EDirect can now preload over 35 million live PubMed records onto an inexpensive external 500 GB (gigabyte)
solid-state drive as individual files for rapid retrieval. For example, PMID 2539356 would be stored at:

 /pubmed/Archive/02/53/93/2539356.xml.gz

using a hierarchy of folders to organize the data for random access to any record.

The local archive is a completely self-contained turnkey system, with no need for the user to download,
configure, and maintain complicated third-party database software.

Entrez Direct: E-utilities on the Unix Command Line 41

Set an environment variable in your configuration file(s) to reference a section of your external drive:

 export EDIRECT_LOCAL_ARCHIVE=/Volumes/external_drive_name/

or set separate environment variables to keep the intermediate steps on the external SSD but leave the resulting
archive in a designated area of the computer's internal storage:

 export EDIRECT_LOCAL_ARCHIVE=$HOME/internal_directory_name/
 export EDIRECT_LOCAL_WORKING=/Volumes/external_drive_name/

In the latter case it will store around 180 GB on the internal drive for the local archive, or up to 250 GB if the
local search index (see below) is also built.

Then run archive-pubmed to download the PubMed release files and distribute each record on the drive. This
process will take several hours to complete, but subsequent updates are incremental, and should finish in
minutes.

Retrieving over 125,000 compressed PubMed records from the local archive:

 esearch -db pubmed -query "PNAS [JOUR]" -pub abstract |
 efetch -format uid | stream-pubmed | gunzip -c |

takes about 20 seconds. Retrieving those records from NCBI's network service, with efetch ‑format xml, would
take around 40 minutes.

Even modest sets of PubMed query results can benefit from using the local cache. A reverse citation lookup on
191 papers:

 esearch -db pubmed -query "Cozzarelli NR [AUTH]" | elink -cited |

requires 13 seconds to match 9620 subsequent articles. Retrieving them from the local archive:

 efetch -format uid | fetch-pubmed |

takes less than one second. Printing the names of all authors in those records:

 xtract -pattern PubmedArticle -block Author \
 -sep " " -tab "\n" -element LastName,Initials |

allows creation of a frequency table:

 sort-uniq-count-rank

that lists the authors who most often cited the original papers:

 145 Cozzarelli NR
 108 Maxwell A
 86 Wang JC
 81 Osheroff N
 ...

Fetching from the network service would extend the 14 second running time to over 2 minutes.

Local Search Index
A similar divide-and-conquer strategy is used to create a local information retrieval system suitable for large
data mining queries. Run archive-pubmed ‑index to populate retrieval index files from records stored in the
local archive. The initial indexing will also take a few hours. Since PubMed updates are released once per day, it
may be convenient to schedule reindexing to start in the late evening and run during the night.

42 Entrez Programming Utilities Help

For PubMed titles and primary abstracts, the indexing process deletes hyphens after specific prefixes, removes
accents and diacritical marks, splits words at punctuation characters, corrects encoding artifacts, and spells out
Greek letters for easier searching on scientific terms. It then prepares inverted indices with term positions, and
uses them to build distributed term lists and postings files.

For example, the term list that includes "cancer" in the title or abstract would be located at:

 /pubmed/Postings/TIAB/c/a/n/c/canc.TIAB.trm

A query on cancer thus only needs to load a very small subset of the total index. The software supports
expression evaluation, wildcard truncation, phrase queries, and proximity searches.

The phrase-search script (with an implied ‑db pubmed) provides access to the local search system.

Names of indexed fields, all terms for a given field, and terms plus record counts, are shown by:

 phrase-search -fields

 phrase-search -terms TITL

 phrase-search -totals PROP

Terms are truncated with trailing asterisks, and can be expanded to show individual postings counts:

 phrase-search -count "catabolite repress*"

 phrase-search -counts "catabolite repress*"

Query evaluation includes Boolean operations and parenthetical expressions:

 phrase-search -query "(literacy AND numeracy) NOT (adolescent OR child)"

Adjacent words in the query are treated as a contiguous phrase:

 phrase-search -query "selective serotonin reuptake inhibitor"

Each plus sign will replace a single word inside a phrase, and runs of tildes indicate the maximum distance
between sequential phrases:

 phrase-search -query "vitamin c + + common cold"

 phrase-search -query "vitamin c ~ ~ common cold"

An exact substring match, without special processing of Boolean operators or indexed field names, can be
obtained with -title (on the article title) or -exact (on the title or abstract), while ranked partial term matching in
any field is available with -match:

 phrase-search -title "Genetic Control of Biochemical Reactions in Neurospora."

 phrase-search -match "tn3 transposition immunity [PAIR]" | just-top-hits 1

MeSH identifier code, MeSH hierarchy key, and year of publication are also indexed, and MESH field queries are
supported by internally mapping to the appropriate CODE or TREE entries:

 phrase-search -query "C14.907.617.812* [TREE] AND 2015:2019 [YEAR]"

 phrase-search -query "Raynaud Disease [MESH]"

The phrase-search ‑filter command allows PMIDs to be generated by an EDirect search and then incorporated
as a component in a local query:

Entrez Direct: E-utilities on the Unix Command Line 43

Data Analysis and Visualization
All query commands return a list of PMIDs, which can be piped directly to fetch-pubmed to retrieve the
uncompressed records. For example:

 phrase-search -query "selective serotonin ~ ~ ~ reuptake inhibit*" |
 fetch-pubmed |
 xtract -pattern PubmedArticle -num AuthorList/Author |
 sort-uniq-count -n |
 reorder-columns 2 1 |
 head -n 25 |
 align-columns -g 4 -a lr

performs a proximity search with dynamic wildcard expansion (matching phrases like "selective serotonin and
norepinephrine reuptake inhibitors") and fetches 12,966 PubMed records from the local archive. It then counts
the number of authors for each paper (a consortium is treated as a single author), printing a frequency table of
the number of papers per number of authors:

 0 51
 1 1382
 2 1897
 3 1906
 ...

The phrase-search and fetch-pubmed scripts are front-ends to the rchive program, which is used to build and
search the inverted retrieval system. Rchive is multi-threaded for speed, retrieving records from the local archive
in parallel, and fetching the positional indices for all terms in parallel before evaluating the title words as a
contiguous phrase.

The cumulative size of PubMed can be calculated with a running sum of the annual record counts. Exponential
growth over time will appear as a roughly linear curve on a semi-logarithmic graph:

 phrase-search -totals YEAR |
 print-columns '$2, $1, total += $1' |
 print-columns '$1, log($2)/log(10), log($3)/log(10)' |
 ilter-columns '$1 >= 1800 && $1 < YR' |
 xy-plot annual-and-cumulative.png

Natural Language Processing
NCBI's Biomedical Text Mining Group performs computational analysis to extract chemical, disease, and gene
references from article contents. NLM indexing of PubMed records assigns Gene Reference into Function
(GeneRIF) mappings.

Running archive-ncbinlp ‑index periodically (monthly) will automatically refresh any out-of-date support files
and then index the connections in CHEM, DISZ, GENE, and several gene subfields (GRIF, GSYN, and PREF):

 phrase-search -terms DISZ | grep -i Raynaud

 phrase-search -counts "Raynaud* [DISZ]"

 phrase-search -query "Raynaud Disease [DISZ]"

Following Citation Links
Running archive-nihocc ‑index will download the latest NIH Open Citation Collection monthly release and
build CITED and CITES indices, the local equivalent of elink ‑cited and ‑cites commands.

44 Entrez Programming Utilities Help

Citation links are retrieved by piping one or more PMIDs to phrase-search ‑link:

 phrase-search -db pubmed -query "Havran W* [AUTH]" |
 phrase-search -link CITED |

This returns PMIDs for 6504 articles that cite the original 96 papers. The records are then fetched and analyzed:

 fetch-pubmed |
 xtract -pattern PubmedArticle -histogram Journal/ISOAbbreviation |
 sort-table -nr | head -n 10

to display the most popular journals in which the subsequent articles were published:

 921 J Immunol
 293 Eur J Immunol
 248 J Exp Med
 168 Front Immunol
 149 Proc Natl Acad Sci U S A
 139 Cell Immunol
 121 Int Immunol
 106 J Invest Dermatol
 105 Immunol Rev
 99 Immunity

Rapidly Scanning PubMed
If the expand-current script is run, an ad hoc scan can be performed on the nonredundant set of live PubMed
records:

 cat $EDIRECT_LOCAL_WORKING/pubmed/Scratch/Current/*.xml |
 xtract -timer -turbo -pattern PubmedArticle -PMID MedlineCitation/PMID \
 -group AuthorList -if "#LastName" -eq 7 -element "&PMID" LastName

finding 1,700,652 articles with seven authors. (This query excludes consortia and additional named investigators.
Author count is now indexed in the ANUM field.)

Xtract uses the Boyer-Moore-Horspool algorithm to partition an XML stream into individual records,
distributing them among multiple instances of the data exploration and extraction function for concurrent
execution. A multi-core computer with a solid-state drive can process all of PubMed in under 4 minutes.

The expand-current script now calls xtract -index to place an XML size object immediately before each PubMed
record:

 ...
 </PubmedArticle>
 <NEXT_RECORD_SIZE>6374</NEXT_RECORD_SIZE>
 <PubmedArticle>
 ...

The xtract ‑turbo flag reads this precomputed information to approximately double the speed of record
partitioning, which is the rate-limiting step when many CPU cores are available. With proper cooling, it should
allow up to a dozen cores to contribute to batch data extraction throughput.

User-Specified Term Index
Running custom-index with a PubMed indexer script and the names of the fields it populates:

 custom-index $(which idx-grant) GRNT

integrates user-specified indices into the local search system. The idx-grant script:

Entrez Direct: E-utilities on the Unix Command Line 45

 xtract -set IdxDocumentSet -rec IdxDocument -pattern PubmedArticle \
 -wrp IdxUid -element MedlineCitation/PMID -clr -rst -tab "" \
 -group PubmedArticle -pkg IdxSearchFields \
 -block PubmedArticle -wrp GRNT -element Grant/GrantID

has reusable boilerplate in its first three lines, and indexes PubMed records by Grant Identifier:

 ...
 <IdxDocument>
 <IdxUid>2539356</IdxUid>
 <IdxSearchFields>
 <GRNT>AI 00468</GRNT>
 <GRNT>GM 07197</GRNT>
 <GRNT>GM 29067</GRNT>
 </IdxSearchFields>
 </IdxDocument>
 ...

Once the final inversion:

 ...
 <InvDocument>
 <InvKey>ai 00468</InvKey>
 <InvIDs>
 <GRNT>2539356</GRNT>
 </InvIDs>
 </InvDocument>
 <InvDocument>
 <InvKey>gm 07197</InvKey>
 <InvIDs>
 <GRNT>2539356</GRNT>
 </InvIDs>
 </InvDocument>
 <InvDocument>
 <InvKey>gm 29067</InvKey>
 <InvIDs>
 <GRNT>2539356</GRNT>
 </InvIDs>
 </InvDocument>
 ..

and posting steps are completed, the new fields are ready to be searched.

Processing by XML Subset
A query on articles with abstracts published in a chosen journal, retrieved from the local cache, and followed by
a multi-step transformation:

 esearch -db pubmed -query "PNAS [JOUR]" -pub abstract |
 efetch -format uid | fetch-pubmed |
 xtract -stops -rec Rec -pattern PubmedArticle \
 -wrp Year -year "PubDate/*" -wrp Abst -words Abstract/AbstractText |
 xtract -rec Pub -pattern Rec \
 -wrp Year -element Year -wrp Num -num Abst > countsByYear.xml

returns structured data with the year of publication and number of words in the abstract for each record:

 <Pub><Year>2018</Year><Num>198</Num></Pub>
 <Pub><Year>2018</Year><Num>167</Num></Pub>
 <Pub><Year>2018</Year><Num>242</Num></Pub>

46 Entrez Programming Utilities Help

(The ">" redirect saves the results to a file.)

The following "for" loop limits the processed query results to one year at a time with xtract ‑select, passing the
relevant subset to a second xtract command:

 for yr in {1960..2021}
 do
 cat countsByYear.xml |
 xtract -set Raw -pattern Pub -select Year -eq "$yr" |
 xtract -pattern Raw -lbl "$yr" -avg Num
 done |

that applies ‑avg to the word counts in order to compute the average number of abstract words per article for the
current year:

 1969 122
 1970 120
 1971 127
 ...
 2018 207
 2019 207
 2020 208

This result can be saved by redirecting to a file, or it can be piped to:

 tee /dev/tty |
 xy-plot pnas.png

to print the data to the terminal and then display the results in graphical format. The last step should be:

 rm countsByYear.xml

to remove the intermediate file.

Identifier Conversion
The archive-pubmed script also downloads MeSH descriptor information from the NLM FTP server and
generates a conversion file:

 ...
 <Rec>
 <Code>D064007</Code>
 <Name>Ataxia Telangiectasia Mutated Proteins</Name>
 ...
 <Tree>D12.776.157.687.125</Tree>
 <Tree>D12.776.660.720.125</Tree>
 </Rec>
 ...

that can be used for mapping MeSH codes to and from chemical or disease names. For example:

 cat $EDIRECT_LOCAL_ARCHIVE/pubmed/Data/meshconv.xml |
 xtract -pattern Rec \
 -if Name -starts-with "ataxia telangiectasia" \
 -element Code

will return:

 C565779
 C576887

Entrez Direct: E-utilities on the Unix Command Line 47

 D001260
 D064007

More information on a MeSH term could be obtained by running:

 efetch -db mesh -id D064007 -format docsum

Integration with Entrez
Use phrase-search -filter to combine the UID results of a search (here followed by a link step) with a local query:

 phrase-search -query "Berg CM [AUTH]" |
 phrase-search -link CITED |
 phrase-search -filter "Transposases [MESH]"

Intermediate lists of PMIDs can be saved to a file and piped (with "cat") into a subsequent phrase-search ‑filter
query. They can also be uploaded to the Entrez history server by piping to epost:

 epost -db pubmed

or piped directly to efetch.

Solid-State Drive Preparation
To initialize a solid-state drive for hosting the local archive on a Mac, log into an admin account, run Disk
Utility, choose View -> Show All Devices, select the top-level external drive, and press the Erase icon. Set the
Scheme popup to GUID Partition Map, and APFS will appear as a format choice. Set the Format popup to APFS,
enter the desired name for the volume, and click the Erase button.

To finish the drive configuration, disable Spotlight indexing on the drive with:

 sudo mdutil -i off "${EDIRECT_LOCAL_ARCHIVE}"
 sudo mdutil -E "${EDIRECT_LOCAL_ARCHIVE}"

and disable FSEvents logging with:

 sudo touch "${EDIRECT_LOCAL_ARCHIVE}/.fseventsd/no_log"

Also exclude the disk from being backed up by Time Machine or scanned by a virus checker.

Automation

Unix Shell Scripting
A shell script can be used to repeat the same sequence of operations on a number of input values. The Unix shell
is a command interpreter that supports user-defined variables, conditional statements, and repetitive execution
loops. Scripts are usually saved in a file, and referenced by file name.

Comments start with a pound sign ("#") and are ignored. Quotation marks within quoted strings are entered by
"escaping" with a backslash ("\"). Subroutines (functions) can be used to collect common code or simplify the
organization of the script.

Combining Data from Adjacent Lines
Given a tab-delimited file of feature keys and values, where each gene is followed by its coding regions:

 gene matK
 CDS maturase K
 gene ATP2B1

48 Entrez Programming Utilities Help

 CDS ATPase 1 isoform 2
 CDS ATPase 1 isoform 7
 gene ps2
 CDS peptide synthetase

the cat command can pipe the file contents to a shell script that reads the data one line at a time:

 #!/bin/bash

 gene=""
 while IFS=$'\t' read feature product
 do
 if ["$feature" = "gene"]
 then
 gene="$product"
 else
 echo "$gene\t$product"
 fi
 done

The resulting output lines, printed by the echo command, have the gene name and subsequent CDS product
names in separate columns on individual rows:

 matK maturase K
 ATP2B1 ATPase 1 isoform 2
 ATP2B1 ATPase 1 isoform 7
 ps2 peptide synthetase

Dissecting the script, the first line selects the Bash shell on the user's machine:

 #!/bin/bash

The latest gene name is stored in the "gene" variable, which is first initialized to an empty string:

 gene=""

The while command sequentially reads each line of the input file, IFS indicates tab-delimited fields, and read
saves the first field in the "feature" variable and the remaining text in the "product" variable:

 while IFS=$'\t' read feature product

The statements between the do and done commands are executed once for each input line. The if statement
retrieves the current value stored in the feature variable (indicated by placing a dollar sign ($) in front of the
variable name) and compares it to the word "gene":

 if ["$feature" = "gene"]

If the feature key was "gene", it runs the then section, which copies the contents of the current line's "product"
value into the persistent "gene" variable:

 then
 gene="$product"

Otherwise the else section prints the saved gene name and the current coding region product name:

 else
 echo "$gene\t$product"

separated by a tab character. The conditional block is terminated with a fi instruction ("if " in reverse):

 fi

Entrez Direct: E-utilities on the Unix Command Line 49

In addition to else, the elif command can allow a series of mutually-exclusive conditional tests:

 if ["$feature" = "gene"]
 then
 ...
 elif ["$feature" = "mRNA"]
 then
 ...
 elif ["$feature" = "CDS"]
 then
 ...
 else
 ...
 fi

A variable can be set to the result of commands that are enclosed between "$(" and ")" symbols:

 mrna=$(echo "$product" | grep 'transcript variant' |
 sed 's/^.*transcript \(variant .*\).*$/\1/')

Entrez Direct Commands Within Scripts
EDirect commands can also be run inside scripts. Saving the following text:

 #!/bin/bash

 printf "Years"
 for disease in "$@"
 do
 frst=$(echo -e "${disease:0:1}" | tr [a-z] [A-Z])
 printf "\t${frst}${disease:1:3}"
 done
 printf "\n"

 for ((yr = 2020; yr >= 1900; yr -= 10))
 do
 printf "${yr}s"
 for disease in "$@"
 do
 val=$(
 esearch -db pubmed -query "$disease [TITL]" |
 efilter -mindate "${yr}" -maxdate "$((yr+9))" |
 xtract -pattern ENTREZ_DIRECT -element Count
)
 printf "\t${val}"
 done
 printf "\n"
 done

to a file named "scan_for_diseases.sh" and executing:

 chmod +x scan_for_diseases.sh

allows the script to be called by name. Passing several disease names in command-line arguments:

 scan_for_diseases.sh diphtheria pertussis tetanus |

returns the counts of papers on each disease, by decade, for over a century:

 Years Diph Pert Teta
 2020s 104 281 154

50 Entrez Programming Utilities Help

 2010s 860 2558 1296
 2000s 892 1968 1345
 1990s 1150 2662 1617
 1980s 780 1747 1488
 ...

A graph of papers per decade for each disease is generated by piping the table to:

 xy-plot diseases.png

Passing the data instead to:

 align-columns -h 2 -g 4 -a ln

right-justifies numeric data columns for easier reading or for publication:

 Years Diph Pert Teta
 2020s 104 281 154
 2010s 860 2558 1296
 2000s 892 1968 1345
 1990s 1150 2662 1617
 1980s 780 1747 1488
 ...

while piping to:

 transmute -t2x -set Set -rec Rec -header

produces a custom XML structure for further comparative analysis by xtract.

Time Delay
The shell script command:

 sleep 1

adds a one second delay between steps, and can be used to help prevent overuse of servers by advanced scripts.

Xargs/Sh Loop
Writing a script to loop through data can sometimes be avoided by creative use of the Unix xargs and sh
commands. Within the "sh ‑c" command string, the last name and initials arguments (passed in pairs by "xargs
‑n 2") are substituted at the "$0" and "$1" variables. All of the commands in the sh string are run separately on
each name:

 echo "Garber ED Casadaban MJ Mortimer RK" |
 xargs -n 2 sh -c 'esearch -db pubmed -query "$0 $1 [AUTH]" |
 xtract -pattern ENTREZ_DIRECT -lbl "$1 $0" -element Count'

This produces PubMed article counts for each author:

 ED Garber 35
 MJ Casadaban 46
 RK Mortimer 85

While Loop
A "while" loop can also be used to independently process lines of data. Given a file "organisms.txt" containing
genus-species names, the Unix "cat" command:

 cat organisms.txt |

Entrez Direct: E-utilities on the Unix Command Line 51

writes the contents of the file:

 Arabidopsis thaliana
 Caenorhabditis elegans
 Danio rerio
 Drosophila melanogaster
 Escherichia coli
 Homo sapiens
 Mus musculus
 Saccharomyces cerevisiae

This can be piped to a loop that reads one line at a time:

 while read org
 do
 esearch -db taxonomy -query "$org [LNGE] AND family [RANK]" < /dev/null |
 efetch -format docsum |
 xtract -pattern DocumentSummary -lbl "$org" \
 -element ScientificName Division
 done

looking up the taxonomic family name and BLAST division for each organism:

 Arabidopsis thaliana Brassicaceae eudicots
 Caenorhabditis elegans Rhabditidae nematodes
 Danio rerio Cyprinidae bony fishes
 Drosophila melanogaster Drosophilidae flies
 Escherichia coli Enterobacteriaceae enterobacteria
 Homo sapiens Hominidae primates
 Mus musculus Muridae rodents
 Saccharomyces cerevisiae Saccharomycetaceae ascomycetes

(The "< /dev/null" input redirection construct prevents esearch from "draining" the remaining lines from stdin.)

For Loop
The same results can be obtained with organism names embedded in a "for" loop:

 for org in \
 "Arabidopsis thaliana" \
 "Caenorhabditis elegans" \
 "Danio rerio" \
 "Drosophila melanogaster" \
 "Escherichia coli" \
 "Homo sapiens" \
 "Mus musculus" \
 "Saccharomyces cerevisiae"
 do
 esearch -db taxonomy -query "$org [LNGE] AND family [RANK]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -lbl "$org" \
 -element ScientificName Division
 done

File Exploration
A for loop can also be used to explore the computer's file system:

 for i in *
 do

52 Entrez Programming Utilities Help

 if [-f "$i"]
 then
 echo $(basename "$i")
 fi
 done

visiting each file within the current directory. The asterisk ("*") character indicates all files, and can be replaced
by any pattern (e.g., "*.txt") to limit the file search. The if statement "‑f " operator can be changed to "‑d" to find
directories instead of files, and "‑s" selects files with size greater than zero.

Processing in Groups
EDirect supplies a join-into-groups-of script that combines lines of unique identifiers or sequence accession
numbers into comma-separated groups:

 #!/bin/sh
 xargs -n "$@" echo |
 sed 's/ /,/g

The following example demonstrates processing sequence records in groups of 200 accessions at a time:

 ...
 efetch -format acc |
 join-into-groups-of 200 |
 xargs -n 1 sh -c 'epost -db nuccore -format acc -id "$0" |
 elink -target pubmed |
 efetch -format abstract'

Programming in Go
A program written in a compiled language is translated into a computer's native machine instruction code, and
will run much faster than an interpreted script, at the cost of added complexity during development.

Google's Go language (also known as "golang") is "an open source programming language that makes it easy to
build simple, reliable, and efficient software". Go eliminates the need for maintaining complicated "make" files.
The build system assumes full responsibility for downloading external library packages. Automated dependency
management tracks module release numbers to prevent version skew.

As of 2020, the Go development process has been streamlined to the point that it is now easier to use than some
popular scripting languages.

To build Go programs, the latest Go compiler must be installed on your computer. A link to the installation URL
is in the Documentation section at the end of this web page.

basecount.go Program
Piping FASTA data to the basecount binary executable (compiled from the basecount.go source code file shown
below):

 efetch -db nuccore -id J01749,U54469 -format fasta | basecount

will return rows containing an accession number followed by counts for each base:

 J01749.1 A 983 C 1210 G 1134 T 1034
 U54469.1 A 849 C 699 G 585 T 748

The full (uncommented) source code for basecount.go is shown here, and is discussed below:

Entrez Direct: E-utilities on the Unix Command Line 53

 package main

 import (
 "eutils"
 "fmt"
 "os"
 "sort"
)

 func main() {

 fsta := eutils.FASTAConverter(os.Stdin, false)

 countLetters := func(id, seq string) {

 counts := make(map[rune]int)
 for _, base := range seq {
 counts[base]++
 }

 var keys []rune
 for ky := range counts {
 keys = append(keys, ky)
 }
 sort.Slice(keys, func(i, j int) bool { return keys[i] < keys[j] })

 fmt.Fprintf(os.Stdout, "%s", id)
 for _, base := range keys {
 num := counts[base]
 fmt.Fprintf(os.Stdout, "\t%c %d", base, num)
 }
 fmt.Fprintf(os.Stdout, "\n")
 }

 for fsa := range fsta {
 countLetters(fsa.SeqID, fsa.Sequence)
 }
 }

Performance can be measured with the Unix "time" command:

 time basecount < NC_000014.fsa

The program reads and counts the 107,043,718 bases of human chromosome 14, from an existing FASTA file, in
under 2.5 seconds:

 NC_000014.9 A 26673415 C 18423758 G 18559033 N 16475569 T 26911943
 2.287

basecount.go Code Review
Go programs start with package main and then import additional software libraries (many included with Go,
others residing in commercial repositories like github.com):

 package main

 import (
 "eutils"
 "fmt"

54 Entrez Programming Utilities Help

 "os"
 "sort"
)

Each compiled Go binary has a single main function, which is where program execution begins:

 func main() {

The fsta variable is assigned to a data channel that streams individual FASTA records one at a time:

 fsta := eutils.FASTAConverter(os.Stdin, false)

The countLetters subroutine will be called with the identifier and sequence of each FASTA record:

 countLetters := func(id, seq string) {

An empty counts map is created for each sequence, and its memory is freed when the subroutine exits:

 counts := make(map[rune]int)

A for loop on the range of the sequence string visits each sequence letter. The map keeps a running count for
each base or residue, with "++" incrementing the current value of the letter's map entry:

 for _, base := range seq {
 counts[base]++
 }

(String iteration by range returns position and letter pairs. Since the code does not use the position, its value is
absorbed by an underscore ("_") character.)

Maps are not returned in a defined order, so map keys are loaded to a keys array, which is then sorted:

 var keys []rune
 for ky := range counts {
 keys = append(keys, ky)
 }
 sort.Slice(keys, func(i, j int) bool { return keys[i] < keys[j] })

(The second argument passed to sort.Slice is an anonymous function literal used to control the sort order. It is
also a closure, implicitly inheriting the keys array from the enclosing function.)

The sequence identifier is printed in the first column:

 fmt.Fprintf(os.Stdout, "%s", id)

Iterating over the array prints letters and base counts in alphabetical order, with tabs between columns:

 for _, base := range keys {
 num := counts[base]
 fmt.Fprintf(os.Stdout, "\t%c %d", base, num)
 }

A newline is printed at the end of the row, and then the subroutine exits, clearing the map and array:

 fmt.Fprintf(os.Stdout, "\n")
 }

The remainder of the main function uses a loop to drain the fsta channel, passing the identifier and sequence
string of each successive FASTA record to the countLetters function. The main function then ends with a final
closing brace:

Entrez Direct: E-utilities on the Unix Command Line 55

 for fsa := range fsta {
 countLetters(fsa.SeqID, fsa.Sequence)
 }
 }

Note that the sequence of human chromosome 14, processed above, is stored in its entirety as a single
contiguous Go string. No special coding considerations are needed for input, access, or memory management,
even though it is over 107 million characters long.

Go Dependency Management
EDirect includes source code for the eutils helper library, which consolidates common functions used by xtract,
transmute, and rchive, including the FASTA parser/streamer used by the basecount program shown above.

In addition to around two dozen eutils "*.go" files, the distribution contains "go.mod" and "go.sum" module files
for the eutils package. They were created by running "./build.sh" in the eutils directory prior to release on the
FTP site.

Modules provide a mechanism for automatically managing external dependencies. They record version numbers
and checksums for the packages imported by eutils source files during development. Go will then retrieve the
same versions of those packages, along with all of their internal support packages, if the eutils library is later
incorporated into other software development projects.

Use of modules allows external Go packages to evolve independently, publishing newer versions with
incompatible function argument signatures on their own schedules, while ensuring that this natural software
development cycle does not break a working library or application build at some inopportune time in the future.

Compiling a Go Project
Each project typically resides in its own directory. The source code can be split into multiple files, and the build
process will normally compile all of the "*.go" files together.

Create a new directory named "basecount" with:

 cd ~
 mkdir basecount

and copy the basecount.go source code file into that directory.

The program can then be compiled by running:

 cd basecount
 go mod init basecount
 echo "replace eutils => $HOME/edirect/eutils" >> go.mod
 go get eutils
 go mod tidy
 go build

but for convenience these commands are usually incorporated into a build script. To do this, save the following
script to a file named build.sh in the same directory:

 #!/bin/bash

 if [! -f "go.mod"]
 then
 go mod init "$(basename $PWD)"
 echo "replace eutils => $HOME/edirect/eutils" >> go.mod
 go get eutils

56 Entrez Programming Utilities Help

 fi

 if [! -f "go.sum"]
 then
 go mod tidy
 fi

 go build

To compile the executable, enter the basecount directory, set the Unix execution permission bit, and run the
build script:

 cd basecount
 chmod +x build.sh
 ./build.sh

The build script runs "go mod init" to generate "go.mod", and "go mod tidy" to generate " go.sum", if either
module file is not already present.

(The "$(basename $PWD)" construct sets the executable's default name to match the parent directory, without
needing to manually customize the "go mod init" line for each project.)

(The "replace eutils => $HOME/edirect/eutils" construct computes the path for finding the local eutils source
code directory in the standard EDirect installation location.)

The "go build" instruction compiles the source file(s) for the application and all dependent libraries (caching the
compiled object files for faster use later). It will then link these into a binary executable file that can run on the
development machine.

You can select specific input files, change the executable program's name, and cross-compile for a different
platform, with additional arguments to "go build":

 env GOOS=darwin GOARCH=arm64 go build -o basecount.Silicon basecount.go

Separate projects in a single directory could be built by changing the "go build" line to:

 for fl in *.go
 do
 go build -o "${fl%.go}" "$fl"
 done

Python Integration
Controlling EDirect from Python scripts is easily done with assistance from the edirect.py library file, which is
included in the EDirect archive:

 import subprocess
 import shlex

 def execute(cmmd, data=""):
 if isinstance(cmmd, str):
 cmmd = shlex.split(cmmd)
 res = subprocess.run(cmmd, input=data,
 capture_output=True,
 encoding='UTF-8')
 return res.stdout.strip()

 def pipeline(cmmds, data=""):
 def flatten(cmmd):

Entrez Direct: E-utilities on the Unix Command Line 57

 if isinstance(cmmd, str):
 return cmmd
 else:
 return shlex.join(cmmd)
 if not isinstance(cmmds, str):
 cmmds = ' | '.join(map(flatten, cmmds))
 res = subprocess.run(cmmds, input=data, shell=True,
 capture_output=True,
 encoding='UTF-8')
 return res.stdout.strip()

 def efetch(*, db, id, format, mode=""):
 cmmd = ('efetch', '-db', db, '-id', str(id), '-format', format)
 if mode:
 cmmd = cmmd + ('-mode', mode)
 return execute(cmmd))

At the beginning of your program, import the edirect module with the following commands:

 #!/usr/bin/env python3

 import sys
 import os
 import shutil

 sys.path.insert(1, os.path.dirname(shutil.which('xtract')))
 import edirect

(Note that the import command uses "edirect", without the ".py" extension.)

The first argument to edirect.execute is the Unix command you wish to run. It can be provided either as a string:

 edirect.execute("efetch -db nuccore -id NM_000518.5 -format fasta")

or as a sequence of strings, which allows a variable's value to be substituted for a specific parameter:

 accession = "NM_000518.5"
 edirect.execute(('efetch', '-db', 'nuccore', '-id', accession, '-format', 'fasta'))

An optional second argument accepts data to be passed to the Unix command through stdin. Multiple steps are
chained together by using the result of the previous command as the data argument in the next command:

 seq = edirect.execute("efetch -db nuccore -id NM_000518.5 -format fasta")
 sub = edirect.execute("transmute -extract -1-based -loc 51..494", seq)
 prt = edirect.execute(('transmute', '-cds2prot', '-every', '-trim'), sub)

Data piped to the script itself is relayed by using "sys.stdin.read()" as the second argument.

Alternatively, the edirect.pipeline function can accept a sequence of individual command strings to be piped
together for execution:

 edirect.pipeline(('efetch -db protein -id NP_000509.1 -format gp',
 'xtract -insd Protein mol_wt sub_sequence'))

or execute a string containing several piped commands:

 edirect.pipeline('''efetch -db nuccore -id J01749 -format fasta |
 transmute -replace -offset 1907 -delete GG -insert TC |
 transmute -search -circular GGATCC:BamHI GAATTC:EcoRI CTGCAG:PstI |
 align-columns -g 4 -a rl''')

58 Entrez Programming Utilities Help

Hiding details (e.g., isinstance, shlex.join, shlex.split, and subprocess.run) inside a common module means that
biologists who are new to coding could control an entire analysis pipeline from their first Python program.

An edirect.efetch shortcut that uses named arguments is also available:

 edirect.efetch(db="nuccore", id="NM_000518.5", format="fasta")

To run a custom shell script, make sure the execute permission bit is set, supply the full execution path, and
follow it with any command-line arguments:

 db = "pubmed"
 res = edirect.execute(("./datefields.sh", db), "")

NCBI C++ Toolkit Access
EDirect scripts can be called from the NCBI C++ toolkit using the ncbi::edirect::Execute function:

 #include <misc/eutils_client/eutils_client.hpp>

The function signature has separate parameters for the script name and its command-line arguments, followed
by an optional string to be passed via stdin:

 string Execute (
 const string& cmmd,
 const vector<string>& args,
 const string& data = kEmptyStr
);

Multiple steps are chained together by using the previous result as the data argument in the next command:

 string seq = ncbi::edirect::Execute
 ("efetch", { "-db", "nuccore", "-id", "NM_000518.5", "-format", "fasta" });
 string sub = ncbi::edirect::Execute
 ("transmute", { "-extract", "-1-based", "-loc", "51..494" }, seq);
 string prt = ncbi::edirect::Execute
 ("transmute", { "-cds2prot", "-every", "-trim" }, sub);

The argument vector can also be generated dynamically, under program control:

 vector<string> args;

 args.push_back("-db");
 args.push_back("pubmed");
 args.push_back("-format");
 args.push_back("abstract");
 args.push_back("-id");
 args.push_back(uid);

Citation matching can be performed on a CPub object reference with the -asn argument:

 string uid = ncbi::edirect::Execute
 ("cit2pmid", { "-asn", FORMAT(MSerial_FlatAsnText << pub) });

or you can use -title, -author, -journal, -volume, -issue, -pages, and -year arguments.

If a matching PMID is found, it can be retrieved as PubmedArticle XML and transformed into Pubmed-entry
ASN.1:

 string xml = ncbi::edirect::Execute
 ("efetch", { "-db", "pubmed", "-format", "xml" }, uid);

Entrez Direct: E-utilities on the Unix Command Line 59

 string asn = ncbi::edirect::Execute
 ("pma2pme", { "-std" }, xml);

The ASN.1 string can then be read into memory with an object loader for further processing:

 #include <objects/pubmed/Pubmed_entry.hpp>

 unique_ptr<CObjectIStream> stm;
 stm.reset (CObjectIStream::CreateFromBuffer
 (eSerial_AsnText, asn.data(), asn.length()));

 CRef<CPubmed_entry> pme (new CPubmed_entry);
 stm->Read (ObjectInfo (*pme));

Additional Examples
EDirect examples demonstrate how to answer ad hoc questions in several Entrez databases. The detailed
examples have been moved to a separate document, which can be viewed by clicking on the ADDITIONAL
EXAMPLES link.

Appendices

Command-Line Arguments
Each EDirect program has a ‑help command that prints detailed information about available arguments. These
include ‑sort values for esearch, ‑format and ‑mode choices for efetch, and ‑cmd options for elink.

Einfo Data
Einfo field data contains status flags for several term list index properties:

 <Field>
 <Name>ALL</Name>
 <FullName>All Fields</FullName>
 <Description>All terms from all searchable fields</Description>
 <TermCount>280005319</TermCount>
 <IsDate>N</IsDate>
 <IsNumerical>N</IsNumerical>
 <SingleToken>N</SingleToken>
 <Hierarchy>N</Hierarchy>
 <IsHidden>N</IsHidden>
 <IsTruncatable>Y</IsTruncatable>
 <IsRangable>N</IsRangable>
 </Field>

Unix Utilities
Several useful classes of Unix text processing filters, with selected arguments, are presented below:

Process by Contents:

 sort Sorts lines of text

 -f Ignore case
 -n Numeric comparison
 -r Reverse result order

 -k Field key (start,stop or first)

60 Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/example6/
https://www.ncbi.nlm.nih.gov/books/n/helpeutils/example6/

 -u Unique lines with identical keys

 -b Ignore leading blanks
 -s Stable sort
 -t Specify field separator

 uniq Removes repeated lines

 -c Count occurrences
 -i Ignore case

 -f Ignore first n fields
 -s Ignore first n characters

 -d Only output repeated lines
 -u Only output non-repeated lines

 grep Matches patterns using regular expressions

 -i Ignore case
 -v Invert search
 -w Search expression as a word
 -x Search expression as whole line

 -e Specify individual pattern

 -c Only count number of matches
 -n Print line numbers
 -A Number of lines after match
 -B Number of lines before match

Regular Expressions:

 Characters

 . Any single character (except newline)
 \w Alphabetic [A-Za-z], numeric [0-9], or underscore (_)
 \s Whitespace (space or tab)
 \ Escapes special characters
 [] Matches any enclosed characters

 Positions

 ^ Beginning of line
 $ End of line
 \b Word boundary

 Repeat Matches

 ? 0 or 1
 * 0 or more
 + 1 or more
 {n} Exactly n

 Escape Sequences

 \n Line break
 \t Tab character

Entrez Direct: E-utilities on the Unix Command Line 61

Modify Contents:

 sed Replaces text strings

 -e Specify individual expression
 s/// Substitute
 /g Global
 /I Case-insensitive
 /p Print

 tr Translates characters

 -d Delete character
 -s Squeeze runs of characters

 rev Reverses characters on line

Format Contents:

 column Aligns columns by content width

 -s Specify field separator
 -t Create table

 expand Aligns columns to specified positions

 -t Tab positions

 fold Wraps lines at a specific width

 -w Line width
 -s Fold at spaces

Filter by Position:

 cut Removes parts of lines

 -c Characters to keep
 -f Fields to keep
 -d Specify field separator

 -s Suppress lines with no delimiters

 head Prints first lines

 -n Number of lines

 tail Prints last lines

 -n Number of lines

Miscellaneous:

 wc Counts words, lines, or characters

 -c Characters
 -l Lines
 -w Words

 xargs Constructs arguments

62 Entrez Programming Utilities Help

 -n Number of words per batch

 mktemp Make temporary file

 join Join columns in files by common field

 paste Merge columns in files by line number

File Compression:

 tar Archive files

 -c Create archive
 -f Name of output file
 -z Compress archive with gzip

 gzip Compress file

 -k Keep original file
 -9 Best compression

 unzip Decompress .zip archive

 -p Pipe to stdout

 gzcat Decompress .gz archive and pipe to stdout

Directory and File Navigation:

 cd Changes directory

 / Root
 ~ Home
 . Current
 .. Parent
 - Previous

 ls Lists file names

 -1 One entry per line
 -a Show files beginning with dot (.)
 -l List in long format
 -R Recursively explore subdirectories
 -S Sort files by size
 -t Sort by most recently modified
 .* Current and parent directory

 pwd Prints working directory path

File Redirection:

 < Read stdin from file
 > Redirect stdout to file
 >> Append to file
 2> Redirect stderr
 2>&1 Merge stderr into stdout
 | Pipe between programs
 <(cmd) Execute command, read results as file

Entrez Direct: E-utilities on the Unix Command Line 63

Shell Script Variables:

 $0 Name of script
 $n Nth argument
 $# Number of arguments
 "$*" Argument list as one argument
 "$@" Argument list as separate arguments
 $? Exit status of previous command

Shell Script Tests:

 -d Directory exists
 -f File exists
 -s File is not empty
 -n Length of string is non-zero
 -x File is executable
 -z Variable is empty or not set

Shell Script Options:

 set Set optional behaviors

 -e Exit immediately upon error
 -u Treat unset variables as error
 -x Trace commands and argument

File and Directory Extraction:

 BAS=$(printf pubmed%03d $n)
 DIR=$(dirname "$0")
 FIL=$(basename "$0")

Remove Prefix:

 FILE="example.tar.gz"
 # ${FILE#.*} -> tar.gz
 ## ${FILE##.*} -> gz

Remove Suffix:

 FILE="example.tar.gz"
 TYPE="http://identifiers.org/uniprot_enzymes/"
 % ${FILE%.*} -> example.tar
 ${TYPE%/} -> http://identifiers.org/uniprot_enzymes
 %% ${FILE%%.*} -> example

Loop Constructs:

 while IFS=$'\t' read ...
 for sym in HBB BRCA2 CFTR RAG1
 for col in "$@"
 for yr in {1960..2020}
 for i in $(seq $first $incr $last)
 for fl in *.xml.gz

Additional documentation with detailed explanations and examples can be obtained by typing "man" followed
by a command name.

64 Entrez Programming Utilities Help

Release Notes
EDirect release notes describe the history of incremental development and refactoring, from the original
implementation in Perl to the redesign in Go and shell script. The detailed notes have been moved to a separate
document, which can be viewed by clicking on the RELEASE NOTES link.

For More Information

Announcement Mailing List
NCBI posts general announcements regarding the E-utilities to the utilities-announce announcement mailing
list. This mailing list is an announcement list only; individual subscribers may not send mail to the list. Also, the
list of subscribers is private and is not shared or used in any other way except for providing announcements to
list members. The list receives about one posting per month. Please subscribe at the above link.

References
The Smithsonian Online Collections Databases are provided by the National Museum of Natural History,
Smithsonian Institution, 10th and Constitution Ave. N.W., Washington, DC 20560-0193. https://
collections.nmnh.si.edu/.

den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T,
Antonarakis SE, Taschner PE. HGVS Recommendations for the Description of Sequence Variants: 2016 Update.
Hum Mutat. 2016. https://doi.org/10.1002/humu.22981. (PMID 26931183.)

Holmes JB, Moyer E, Phan L, Maglott D, Kattman B. SPDI: data model for variants and applications at NCBI.
Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz856. (PMID 31738401.)

Hutchins BI, Baker KL, Davis MT, Diwersy MA, Haque E, Harriman RM, Hoppe TA, Leicht SA, Meyer P,
Santangelo GM. The NIH Open Citation Collection: A public access, broad coverage resource. PLoS Biol. 2019.
https://doi.org/10.1371/journal.pbio.3000385. (PMID 31600197.)

Kim S, Thiessen PA, Cheng T, Yu B, Bolton EE. An update on PUG-REST: RESTful interface for programmatic
access to PubChem. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky294. (PMID 29718389.)

Mitchell JA, Aronson AR, Mork JG, Folk LC, Humphrey SM, Ward JM. Gene indexing: characterization and
analysis of NLM's GeneRIFs. AMIA Annu Symp Proc. 2003:460-4. (PMID 14728215.)

Ostell JM, Wheelan SJ, Kans JA. The NCBI data model. Methods Biochem Anal. 2001. https://doi.org/
10.1002/0471223921.ch2. (PMID 11449725.)

Schuler GD, Epstein JA, Ohkawa H, Kans JA. Entrez: molecular biology database and retrieval system. Methods
Enzymol. 1996. https://doi.org/10.1016/s0076-6879(96)66012-1. (PMID 8743683.)

Wei C-H, Allot A, Leaman R, Lu Z. PubTator central: automated concept annotation for biomedical full text
articles. Nucleic Acids Res. 2019. https://doi.org/10.1093/nar/gkz389. (PMID 31114887.)

Wu C, Macleod I, Su AI. BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids
Res. 2013. https://doi.org/10.1093/nar/gks1114. (PMID 23175613.)

Documentation
EDirect navigation functions call the URL-based Entrez Programming Utilities:

 https://www.ncbi.nlm.nih.gov/books/NBK25501

Entrez Direct: E-utilities on the Unix Command Line 65

https://www.ncbi.nlm.nih.gov/books/n/helpeutils/release6/
https://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce/
https://www.ncbi.nlm.nih.gov/mailman/listinfo/utilities-announce/
https://www.ncbi.nlm.nih.gov/books/NBK25501

NCBI database resources are described by:

 https://www.ncbi.nlm.nih.gov/pubmed/37994677

Information on how to obtain an API Key is described in this NCBI blogpost:

 https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities

An introduction to shell scripting for non-programmers is at:

 https://missing.csail.mit.edu/2020/shell-tools/

An article on the Go programming language, written by its creators, is at:

 https://cacm.acm.org/research/the-go-programming-language-and-environment/

and transcripts of talks on design philosophy and retrospective experience of Go are at:

 https://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html

 https://commandcenter.blogspot.com/2024/01/what-we-got-right-what-we-got-wrong.html

Instructions for downloading and installing the Go compiler are at:

 https://golang.org/doc/install#download

Additional NCBI website and data usage policy and disclaimer information is located at:

 https://www.ncbi.nlm.nih.gov/home/about/policies/

Public Domain Notice
A copy of the NCBI Public Domain Notice, which applies to EDirect, is shown below:

 PUBLIC DOMAIN NOTICE
 National Center for Biotechnology Information

 This software/database is a "United States Government Work" under the
 terms of the United States Copyright Act. It was written as part of
 the author's official duties as a United States Government employee and
 thus cannot be copyrighted. This software/database is freely available
 to the public for use. The National Library of Medicine and the U.S.
 Government have not placed any restriction on its use or reproduction.

 Although all reasonable efforts have been taken to ensure the accuracy
 and reliability of the software and data, the NLM and the U.S.
 Government do not and cannot warrant the performance or results that
 may be obtained by using this software or data. The NLM and the U.S.
 Government disclaim all warranties, express or implied, including
 warranties of performance, merchantability or fitness for any particular
 purpose.

 Please cite the author in any work or product based on this material.

Getting Help
Please refer to the PubMed and Entrez help documents for more information about search queries, database
indexing, field limitations and database content.

66 Entrez Programming Utilities Help

https://pubmed.ncbi.nlm.nih.gov/37994677
https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities
https://missing.csail.mit.edu/2020/shell-tools/
https://cacm.acm.org/research/the-go-programming-language-and-environment/
https://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html
https://commandcenter.blogspot.com/2024/01/what-we-got-right-what-we-got-wrong.html
https://golang.org/doc/install#download
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/books/n/helppubmed/pubmedhelp/
https://www.ncbi.nlm.nih.gov/books/n/helpentrez/EntrezHelp/

Suggestions, comments, and questions specifically relating to the EUtility programs may be sent to
eutilities@ncbi.nlm.nih.gov.

Entrez Direct: E-utilities on the Unix Command Line 67

	Getting Started
	Searching and Filtering
	Structured Data
	Complex Objects
	Sequence Records
	Sequence Coordinates
	Gene Records
	External Data
	Local PubMed Cache
	Automation
	Additional Examples
	Appendices
	Release Notes
	For More Information

