Development of a reference data set for assigning Streptococcus and Enterococcus species based on next generation sequencing of the 16S-23S rRNA region

Antimicrob Resist Infect Control. 2019 Nov 15:8:178. doi: 10.1186/s13756-019-0622-3. eCollection 2019.

Abstract

Background: Many members of Streptococcus and Enterococcus genera are clinically relevant opportunistic pathogens warranting accurate and rapid identification for targeted therapy. Currently, the developed method based on next generation sequencing (NGS) of the 16S-23S rRNA region proved to be a rapid, reliable and precise approach for species identification directly from polymicrobial and challenging clinical samples. The introduction of this new method to routine diagnostics is hindered by a lack of the reference sequences for the 16S-23S rRNA region for many bacterial species. The aim of this study was to develop a careful assignment for streptococcal and enterococcal species based on NGS of the 16S-23S rRNA region.

Methods: Thirty two strains recovered from clinical samples and 19 reference strains representing 42 streptococcal species and nine enterococcal species were subjected to bacterial identification by four Sanger-based sequencing methods targeting the genes encoding (i) 16S rRNA, (ii) sodA, (iii) tuf and (iv) rpoB; and NGS of the 16S-23S rRNA region.

Results: This study allowed obtainment and deposition of reference sequences of the 16S-23S rRNA region for 15 streptococcal and 3 enterococcal species followed by enrichment for 27 and 6 species, respectively, for which reference sequences were available in the databases. For Streptococcus, NGS of the 16S-23S rRNA region was as discriminative as Sanger sequencing of the tuf and rpoB genes allowing for an unambiguous identification of 93% of analyzed species. For Enterococcus, sodA, tuf and rpoB genes sequencing allowed for identification of all species, while the NGS-based method did not allow for identification of only one enterococcal species. For both genera, the sequence analysis of the 16S rRNA gene was endowed with a low identification potential and was inferior to that of other tested identification methods. Moreover, in case of phylogenetically related species the sequence analysis of only the intergenic spacer region was not sufficient enough to precisely identify Streptococcus strains at the species level.

Conclusions: Based on the developed reference dataset, clinically relevant streptococcal and enterococcal species can now be reliably identified by 16S-23S rRNA sequences in samples. This study will be useful for introduction of a novel diagnostic tool, NGS of the 16S-23S rRNA region, which undoubtedly is an improvement for reliable culture-independent species identification directly from polymicrobially constituted clinical samples.

Keywords: 16S–23S rRNA region; Diagnostics; Enterococcus; Genetic identification; NGS; Streptococcus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Typing Techniques
  • DNA, Ribosomal Spacer
  • Enterococcus / classification
  • Enterococcus / genetics*
  • Genes, Bacterial
  • Gram-Positive Bacterial Infections / diagnosis*
  • Gram-Positive Bacterial Infections / microbiology*
  • High-Throughput Nucleotide Sequencing
  • Humans
  • RNA, Ribosomal, 16S*
  • RNA, Ribosomal, 23S*
  • Sequence Analysis, DNA
  • Streptococcus / classification
  • Streptococcus / genetics*

Substances

  • DNA, Ribosomal Spacer
  • RNA, Ribosomal, 16S
  • RNA, Ribosomal, 23S